2009 Weak KAM Theory in Nice

2009 尼斯弱KAM理论

基本信息

  • 批准号:
    0903201
  • 负责人:
  • 金额:
    $ 2.82万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2009
  • 资助国家:
    美国
  • 起止时间:
    2009-02-01 至 2010-01-31
  • 项目状态:
    已结题

项目摘要

AbstractGangboPartial support of US participants is requests fund for an international conference in Nice France, which will be held from February 02 to 07, 2009. The Laboratoire J.A. Dieudonn´e of ?Universit´e de Nice-Sophia Antipolis? has graciously agreed to host that conference. This is the first international conference sponsored by the French National Research Agency (ANR) through a project named KAMFAIBLE. This conference will bring together leading experts from various continents (Europe, the United States of America and Latin America), who are expected to interact with postdocs and students. The workshop includes the participation of scientists from emergent nations such as Mexico, Brazil and the People?s Republic of China. The intellectual merit of this conference is to continue unearthing new connections between the weak KAM theory and other fields of mathematics such as dynamical systems, partial differential equations, optimal transportation theory, and many others. Another merit of this proposal is to continue exploring the ramifications of the weak KAM theory in many other subjects of sciences such as the homegenization theory, the kinetic theory of gases and fluids mechanic [GKP] [GNT2] (see also works in progress [GT1], [GT2]). This workshop will expose graduate students as well as faculty members to recent progress in the weak KAM theory, geometry and partial differential equations. The broader impact includes advancing knowledge, disseminating findings and exposing young researchers to this vibrant area at the crossing of Analysis, Riemannian Geometry, Dynamical Systems and Symplectic Geometry.
美国参与者的AbstractGangbopartial支持是在尼斯法国举行的国际会议的请求基金,该会议将于2009年2月至2009年2月7日举行。LaboratoireJ.A. dieudonn'e of?de nice de nice-sophia antipolis?慷慨地同意主持该会议。这是法国国家研究机构(ANR)通过一个名为Kamfaible的项目赞助的国际会议。这次会议将汇集来自各种延续(欧洲,美利坚合众国和拉丁美洲)的领先专家,他们有望与博士后和学生互动。研讨会包括来自墨西哥,巴西和中华民国等新兴国家的科学家的参与。这次会议的智力优点是继续发掘弱KAM理论与其他领域数学(例如动态系统,部分微分方程,最佳运输理论等)之间的新联系。该提案的另一个优点是继续探索许多其他科学学科的弱KAM理论的后果,例如Homegenized理论,气体和流体的动力学理论[GKP] [GNT2](另请参阅进展[GT1],[GT2],[GT2])。该研讨会将使研究生以及教职员工在弱KAM理论,几何和部分微分方程方面的最新进展。更广泛的影响包括在分析,Riemannian几何形状,动态系统和象征性几何形状的交叉时,提高知识,传播发现并将年轻研究人员暴露于这个充满活力的领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wilfrid Gangbo其他文献

Wilfrid Gangbo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wilfrid Gangbo', 18)}}的其他基金

Variational Problems and Dynamics in Spaces of Large Dimensions
大维空间中的变分问题和动力学
  • 批准号:
    2154578
  • 财政年份:
    2022
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Infinite dimensional variational problems and their dynamics
无限维变分问题及其动力学
  • 批准号:
    1700202
  • 财政年份:
    2017
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
Variational Methods and Dynamics
变分方法和动力学
  • 批准号:
    1160939
  • 财政年份:
    2012
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
2007 International Conference in Ouidah
2007 年维达国际会议
  • 批准号:
    0726688
  • 财政年份:
    2007
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Geometry on the Set of Probability Measures
概率测度集的几何
  • 批准号:
    0600791
  • 财政年份:
    2006
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Applications of Transportation Theory to Nonlinear Dynamics
FRG:合作研究:运输理论在非线性动力学中的应用
  • 批准号:
    0354729
  • 财政年份:
    2004
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
The Monge-Kantorovich in Kinetic Theory
运动理论中的蒙日-康托罗维奇
  • 批准号:
    0200267
  • 财政年份:
    2002
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
Collaborative Research: Optimal Transportation: Its Geometry and Applications
合作研究:最优交通:其几何结构和应用
  • 批准号:
    0074037
  • 财政年份:
    2000
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant
Applications of Monge-Kantorovich Theory and Michell Trusses
Monge-Kantorovich理论和米歇尔桁架的应用
  • 批准号:
    9970520
  • 财政年份:
    1999
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Continuing Grant
Mathematical Sciences: The Monge Problem and the Calculus of Variations
数学科学:蒙日问题和变分法
  • 批准号:
    9622734
  • 财政年份:
    1996
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Standard Grant

相似国自然基金

磁转动超新星爆发中weak r-process的关键核反应
  • 批准号:
    12375145
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
基于纵向队列的老年虚弱症生物标志物研究
  • 批准号:
    81571372
  • 批准年份:
    2015
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

高含水率坑井の水生産抑制に向けたWeakゲル開発と広域流体制御技術の向上
开发弱凝胶并改进广域流体控制技术以抑制高含水井产水
  • 批准号:
    24K08317
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
New measurement of the weak mixing angle
弱混合角的新测量
  • 批准号:
    2908000
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Studentship
歩行補助用具の神経科学的特性の解明-虚弱高齢者の積極的な歩行機能改善を目指して
阐明助行器的神经科学特性——旨在主动改善体弱老年人的步行功能
  • 批准号:
    23K21866
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Weak notions of curvature-dimension conditions on step-two Carnot groups
二级卡诺群上曲率维数条件的弱概念
  • 批准号:
    24K16928
  • 财政年份:
    2024
  • 资助金额:
    $ 2.82万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Organization of transcriptional machinery by weak multivalent interactions
通过弱多价相互作用组织转录机制
  • 批准号:
    10758297
  • 财政年份:
    2023
  • 资助金额:
    $ 2.82万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了