Decoupling Theory and Exponential Sum Estimates

解耦理论和指数和估计

基本信息

  • 批准号:
    2154531
  • 负责人:
  • 金额:
    $ 10.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-08-01 至 2023-02-28
  • 项目状态:
    已结题

项目摘要

This project concerns the study of decoupling inequalities in harmonic analysis. Such inequalities measure the oscillation and cancellation in the Fourier transform of various curved geometric surfaces such as the paraboloid, cone, or moment curve. These inequalities arise from studying partial differential equations such as the Schrödinger equation or wave equation and also from number theory through exponential sums, which can be thought of as Fourier series that encode certain arithmetic data. Over the years, tools in these two areas have developed somewhat independently from each other. One aim of this project is to bring more tools from number theory into Fourier analysis. The connections between these two areas will be studied with hopes of proving decoupling inequalities for a wider and more general class of surfaces and improving upon quantitative versions of these inequalities. Activities will further include organizing an online seminar, several undergraduate activities, and even presentations motivated by the research that are accessible to the public.In 2015, Bourgain, Demeter, and Guth were able to prove a decoupling theorem for the moment curve from which the Main Conjecture in Vinogradov's Mean Value Theorem (VMVT), a longstanding open question from 1935, followed as a corollary. Their method was purely Fourier analytic. At roughly at the same time, Wooley used his method of efficient congruencing to give a purely number theoretic proof of the VMVT. Decoupling and efficient congruencing developed separately and independently of each other. One objective of this project is to further study connections between them. Previous attempts at interpreting ideas from efficient congruencing from the perspective of decoupling have yielded fresh insights and new points of views. The project includes a continued study of progress on VMVT in hopes of uncovering new tools in harmonic analysis to use them to prove decoupling estimates for a more general class of surfaces. Other goals of this project are to obtain improved quantitative estimates for VMVT via decoupling over local fields which has applications, for example, to the Riemann zeta function. Additionally, work will be done on proving decoupling estimates for different norms and surfaces and more refined situations where more information is known than what is typically given.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及调和分析中解耦不等式的研究,此类不等式测量抛物面、圆锥体或矩曲线等各种弯曲几何表面的傅立叶变换中的振荡和抵消。这些不等式源于研究偏微分方程。薛定谔方程或波动方程,以及从数论到指数和,可以被认为是编码某些算术数据的傅立叶级数多年来,这两个工具。该项目的一个目标是将更多的数论工具引入傅立叶分析中,以期证明更广泛和更通用的曲面类型的解耦不等式。活动将进一步包括组织在线研讨会、一些本科生活动,甚至是由研究推动的向公众开放的演讲。2015 年,布尔根、德米特和古斯能够做到这一点。为了证明矩曲线的解耦定理,维诺格拉多夫中值定理 (VMVT) 中的主要猜想是 1935 年的一个长期悬而未决的问题,他们的方法是纯粹的傅里叶分析,大约在同一时间。使用他的高效同余方法给出了 VMVT 的解耦和高效同余的纯数论证明,其中一个目标是独立发展的。该项目旨在进一步研究它们之间的联系,之前从解耦的角度解释有效一致性的想法已经产生了新的见解和新的观点,该项目包括对 VMVT 进展的持续研究,希望能够发现新的工具。该项目的其他目标是通过对局部场进行解耦来获得改进的 VMVT 定量估计,该解耦可应用于黎曼方程等。此外,zeta 函数还反映出,我们将致力于证明不同规范和表面以及已知信息比通常给出的信息更多的更精细情况下的解耦估计。该奖项的法定使命是通过使用基金会的评估进行评估,并被认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zane Li其他文献

Zane Li的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zane Li', 18)}}的其他基金

Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
  • 批准号:
    2311174
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Continuing Grant
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
  • 批准号:
    2409803
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Continuing Grant
PostDoctoral Research Fellowship
博士后研究奖学金
  • 批准号:
    1902763
  • 财政年份:
    2019
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Fellowship Award

相似国自然基金

统计过程监测理论在肠道菌群健康指数构建过程中的适用性研究
  • 批准号:
    32372345
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
变量各向异性欧氏空间上的变指数函数空间实变理论及其应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    29 万元
  • 项目类别:
    地区科学基金项目
基于李亚普诺夫指数谱干扰抑制理论的混沌无线电引信研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
单指数Copula模型的估计和选择:理论与应用
  • 批准号:
    72273112
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
交易型开放式指数基金的资产定价分析与市场影响:理论与实证
  • 批准号:
    72101067
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Equivariant index theory of infinite-dimensional manifolds and related topics
无限维流形等变指数理论及相关主题
  • 批准号:
    23K12970
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
  • 批准号:
    2311174
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Continuing Grant
Decoupling Theory and Exponential Sum Estimates
解耦理论和指数和估计
  • 批准号:
    2409803
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Continuing Grant
The study of Whittaker functions for degenerate characters and their application to the global theory of automorphic forms
简并特征Whittaker函数的研究及其在自守形式全局理论中的应用
  • 批准号:
    23K03079
  • 财政年份:
    2023
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
A mathematical approach to black hole perturbation theory
黑洞微扰理论的数学方法
  • 批准号:
    22K03641
  • 财政年份:
    2022
  • 资助金额:
    $ 10.21万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了