SemiSynBio-III: Scalable Nucleic Acid Memory
SemiSynBio-III:可扩展核酸内存
基本信息
- 批准号:2227626
- 负责人:
- 金额:$ 150万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-10-15 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Worldwide digital data generation is growing at a rate that rapidly outpaces the capacity of current data-storage technologies. Over 150 billion terabytes a year are predicted to be generated by 2025. DNA has emerged as a next-generation data storage solution due to its high stability and high information density. However, the potential of DNA-based information storage has not been fully exploited due to the cost and energy required for DNA synthesis and sequencing. In this project, self-assembled DNA nanostructures place DNA data strands with nanometer precision in all three dimensions. The stored information is recovered optically by time-resolved super-resolution microscopy. As a result, the need for unique DNA strands is significantly reduced with a corresponding decrease in the cost of synthesis. Furthermore, data readout is non-destructive and storage volume scales beyond terabyte levels. This project develops and delivers workforce development training at the interface of Synthetic Biology and Semiconductor research. Students trained through this project will be immersed in an interdisciplinary research team with expertise in Material Science, Synthetic Biology, Computer Science and Electrical Engineering. The research results will be disseminated through high-impact journals, premier conferences, websites, and social media, and will be integrated into multiple courses at Boise State. The research team will partner with the Boise State Institute for Inclusive and Transformative Scholarship to recruit and retain students from underrepresented backgrounds.The project aims to advance DNA-based information storage through robust data encoding/decoding algorithms, deep neural network-based image processing, scalable synthetic biology, custom imaging arrays, and an evolution-inspired sequence optimization algorithm. To do so, a rotation-invariant data-encoding, error-correction scheme will be developed along with a state-of-the-art deep neural network-based approach for adaptive image processing, and a Bayes-optimal data recovery/error correction algorithm to optimize probe localization and drift correction. Large custom DNA “scaffolds” with orthogonal DNA staple strands will be created to construct origami with more data sites per assembly. DNA scaffolds will be created to allow multiple storage nodes to be built in a single “one-pot” synthesis. A time-correlated super-resolution microscopy technique will be developed, which seamlessly integrates super-resolution and fluorescence lifetime microscopy to record interactions between dye-labeled imager strands and their sequence complement in three dimensions. Custom imaging arrays based on state-of-art single-photon avalanche diode technology will be designed and manufactured by commercial foundry services to achieve 5 X 5 X 1 nm readout resolution. Finally, an evolution-inspired sequence optimization algorithm will be developed to optimize DNA sequences both for readout and origami synthesis. In doing so, this work will increase information density that can be stored in DNA nanostructures and the efficiency of read, which reduces the amount of DNA needed for large scale data storage, improving both the scalability and sustainability of DNA-based information storage.The project was jointly funded by Division of Electrical, Communications and Cyber Systems (ECCS) in the Directorate for Engineering (ENG), Division of Computing and Communication Foundations (CCF) in the Directorate for Computer and Information Science and Engineering (CISE), Division of Molecular and Cellular Biosciences (MCB) in the Directorate for Biological Sciences (BIO), and the Division of Materials Research (DMR) in the Directorate for Mathematical and Physical Sciences (MPS).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
全球数字数据生成的速度正在迅速超过当前数据存储技术的容量,预计到 2025 年,每年将生成超过 1500 亿兆字节。DNA 因其高性能而成为下一代数据存储解决方案。然而,由于DNA合成和测序所需的成本和能量,基于DNA的信息存储的潜力尚未得到充分开发。在该项目中,自组装DNA纳米结构放置DNA数据。在所有三个维度上都具有纳米精度的链,通过时间分辨超分辨率显微镜以光学方式恢复存储的信息,因此,对独特 DNA 链的需求显着减少,同时合成成本也相应降低。读出是非破坏性的,存储容量规模超过 TB 级。通过该项目培训的学生将在合成生物学和半导体研究领域开发并提供劳动力发展培训。沉浸在材料科学、合成生物学、计算机科学和电气工程专业知识的跨学科研究团队中,研究成果将通过高影响力期刊、重要会议、网站和社交媒体传播,并将整合到多个课程中。该研究团队将与博伊西州立包容性和变革奖学金研究所合作,招募和留住来自弱势背景的学生。该项目旨在通过强大的数据编码/解码算法推进基于 DNA 的信息存储,基于深度神经网络的图像处理、可扩展的合成生物学、定制成像阵列和受进化启发的序列优化算法为此,将开发旋转不变的数据编码、纠错方案以及状态。 -将创建基于深度神经网络的自适应图像处理方法,以及用于优化探针定位和漂移校正的贝叶斯最优数据恢复/纠错算法,以实现具有正交DNA主链的大型定制DNA“支架”。将创建每个组装具有更多数据位点的折纸,以允许在单个“一锅”合成中构建多个存储节点,从而无缝集成超分辨率显微镜技术。分辨率和荧光寿命显微镜将设计和制造基于最先进的单光子雪崩二极管技术的定制成像阵列,以记录染料标记的成像链及其序列互补之间的相互作用。最后,将开发一种受进化启发的序列优化算法,以优化读出和折纸合成的 DNA 序列。存储在 DNA 纳米结构中并提高读取效率,从而减少了大规模数据存储所需的 DNA 数量,提高了基于 DNA 的信息存储的可扩展性和可持续性。该项目由电气、通信和网络部门联合资助系统(ECCS)工程理事会 (ENG)、计算机和信息科学与工程理事会 (CISE) 计算和通信基础部 (CCF)、生物科学理事会 (BIO) 分子和细胞生物科学部 (MCB) ,以及数学和物理科学理事会 (MPS) 下的材料研究部 (DMR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势进行评估,认为值得支持。以及更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In-vitro validated methods for encoding digital data in deoxyribonucleic acid (DNA)
用于在脱氧核糖核酸 (DNA) 中编码数字数据的体外验证方法
- DOI:10.1186/s12859-023-05264-6
- 发表时间:2023-04
- 期刊:
- 影响因子:3
- 作者:Mortuza, Golam Md;Guerrero, Jorge;Llewellyn, Shoshanna;Tobiason, Michael D.;Dickinson, George D.;Hughes, William L.;Zadegan, Reza;Andersen, Tim
- 通讯作者:Andersen, Tim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Johnson其他文献
Viral Vaping: A systematic review and meta analysis of e-cigarette and Tobacco-Related social media content and its influence on youth behaviours and attitudes.
病毒式电子烟:对电子烟和烟草相关社交媒体内容及其对青少年行为和态度的影响进行系统回顾和元分析。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Brienna N Rutherford;C. Lim;Brandon Cheng;Tianze Sun;Giang Vu;Benjamin Johnson;Daniel Paul Ashley;J. Chung;Sandy Huang;J. Leung;D. Stjepanović;J. Connor;G. Chan - 通讯作者:
G. Chan
Longitudinal association between exposure to e-cigarette advertising and youth e-cigarette use in the United States.
美国电子烟广告接触与青少年电子烟使用之间的纵向关联。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Tianze Sun;Giang Vu;C. Lim;Benjamin Johnson;D. Stjepanović;J. Leung;J. Connor;C. Gartner;W. Hall;G. Chan - 通讯作者:
G. Chan
Prevalence of medical technology assistance among children in Massachusetts in 1987 and 1990.
1987 年和 1990 年马萨诸塞州儿童中医疗技术援助的普及率。
- DOI:
- 发表时间:
1994 - 期刊:
- 影响因子:0
- 作者:
Judith S. Palfrey;M. Haynie;Stephanie Porter;Bsn;Terence Fenton;EdD;Paula COOPERMAN;Ba;Deirdre Shaw;Benjamin Johnson;T. Bierle;Deborah Klein Walker - 通讯作者:
Deborah Klein Walker
Radiological Society of North America (RSNA) 3D printing Special Interest Group (SIG): guidelines for medical 3D printing and appropriateness for clinical scenarios
北美放射学会 (RSNA) 3D 打印特别兴趣小组 (SIG):医疗 3D 打印指南和临床场景适用性
- DOI:
10.1186/s41205-018-0030-y - 发表时间:
2018-11-21 - 期刊:
- 影响因子:3.7
- 作者:
L. Chepelev;N. Wake;J. Ryan;Waleed Althobaity;Ashish Gupta;E. Arribas;L. Santiago;D. Ballard;Kenneth C. Wang;W. Weadock;C. Ionita;D. Mitsouras;Jonathan M Morris;Jane S. Matsumoto;Andy Christensen;P. Liacouras;F. Rybicki;A. Sheikh;Abraham Adam C Alej;ro A Ale;er J Amar B Ambroise Mat Levitin Zoga Espinoza Chien Shah Temdemno Chaoui A;ro;er;A. Levitin;A. Zoga;Alej;ro A. Espinoza;ro;Ale;er J Chien;er;Amar Shah;A. M. D. Temdemno;A. Chaoui;Amy E. Ale;er;er;An;V Rao;Anne Garcia;Angel R Colon;Antoine Leimgruber;A. V;erhofstadt;erhofstadt;Asra Khan;A. Guazzoni;B. McComb;B. Tubb;Benjamin Johnson;B. Howe;Berdoudi Rabah;B. Greenwood;Beth Ripley;B. Kline;Brent Chanin;Brian A Tweddale;B. McNamee;B. Barack;B. Shuckett;Bryan Crutchfield;Carina L Butler;C. A. Ridpath;Carlos I Hern;ez Rojas;ez;Carlos Torres;C. Souza;Chen C Hoffmann;C. Kirby;Ching;Chris Letrong;C. Kotsarini;Christine J. Kim;Christopher A Swingle;Christopher E. Smith;Christoph M. Wilke;C. Yurko;Claudio S. Silva;Colin M. Wilson;Craig S Howard;D. A. Selvam;Dana A Fuller;D. A. Crawford;Daniel Davis;Daniel LaRussa;Daniel S Madsen;Daniele Marin;Darshit Thakrar;Dave Nuthals;D. Dreizin;D. Hough;D. Maccutcheon;Daya Vora;Deborah E Starkey;D. Samama;D. West;D. Twickler;D. Emerson;Dong Xu;Dorothy J Shum;E. D. Lucas;E. M. Rosa;Edward A Del Grosso;E. Quigley;Edward Stefanowicz;E. Escobar;E. Baumel;Eric Teil;Erik W Stromeyer;E. Ferris;F. D'aless;ro;ro;Fadi Toonsi;Faisal Shah;Fern;o A Alvarado;o;Francesco Potito;F. Bonelli;Freddy Drews;G. Pastena;G. Kerber;G. Kitamura;G. Antaki;Georgina A Viyella;Gerard P Farrar;Gloria M Rapoport;G. Moonis;H. Henry Guo;Halemane S Ganesh;Han Ta;H. Bjarnason;Hemant Patel;Hongju Son;Hui;Hyun;I. Youssef;J. Drew;Jaime Ribeiro Barbosa;James B Allison;James Shin;J. Grice;J. Ast;Jayanthi Parthasarathy;J. Haithcock;Jeffrey A Sodergren;J. D. Hirsch;Jesus D Buonomo;Joaquim M Farinhas;J. Stein;J. Goerich;J. Skinner;J. G. O’Rourke;John Oh;J. Knoedler;J. Aziza;J. Ford;J. E. Salazar;J. Barriocanal;J. A. Maldonado;Joseph Johnnie;J. Aulino;J. Pressacco;Ju;Juergen Br;t;t;Julie S. Lee;Juling Ong I;J. Sutherl;K. Moeller;Katherine H. Weimer;K. G. Oxner;Kathryn E Pflug;Kelly D. Smith;Kelly Oppe;K. Buckwalter;K. L. S;ock;ock;K. Thielen;Kevin A Lugo;K. Roche;K. Pope;Keyur Mehta;Kimberly Torluemke;Kirby K Wong;K. Kubin;K. Kolli;K. Oatis;K. Lai;Lance E Reinsmith;Laura A. McDaniel;Leizle E Talangbayan;Leszek J Jaszczak;Ligia Cardona;L. Wong;Liza Nellyta;L. Kircos;L. Lacoursiere;L. Remonda;L. M. Sheldon;L. Grazioli;Luis A. Campos;Luis A Rodriguez Palomares;M. Rayan;M. Gollub;Margaret O Brown;Mariah Geritano;M. Thomas;M. Sturla;Mark A Smith;M. D. Alson;M. Sharafinski;Marshall B Hay;M. Wickum;M. Hu;M. Christie;Mashael Alrujaib;M. Allen;Mayola C Boykin;M. Gillies;M. Maloney;Michael Gaisford;Michael L. Richardson;Michael T McGuire;Michael T Miller;M. W. Itagaki;Michel Bérubé;Michel Dumas;M. L. Walker;M. Eghtedari;Muge Ozhabes;N. Reichek;N. Gowda;Nicholas C Fraley;N. Rhodes;Nopporn Beokhaimook;Pamela Rowntree;P. Fontaine;P. Rhyner;Patrick Chang;P. Lizotte;P. Bernardes;Pedro E Diaz;P. Liao;Perla M. Salgado;P. V. van Ooijen;P. Piechocniski;Philip S Lim;P. Brantner;P. Grouwels;P. D. Baker;P. Dalvie;Qurashi M Ali Fadlelseed;R. Scott Rader;Rajaram E Reddy;R. Shorti;R. Javan;R;olph K. Otto;olph;Raphael J Alcuri;Rasim C Oz;R. Levy;R. Barlow;Ric Brown;R. Shoenfeld;R. Makanji;R. Posniak;Robert L Falk;R. Dewitt;R. Redlich;R. Pugash;R. G. Bryan;Salim S Merchant;Sang Joon Park;Sang;S. Mallya;S. Prabhu;S. Sinha;S. Chauhan;Satinder S. Rekhi;S. Faro;Scott T. Williams;S. Sefidbakht;S. A. González;S. Berkowitz;S. Zingula;Shannon Kirk;S. Gould;Shuai Leng;Sidney D Machefsky;Sofiane Derrouis;S. Malini;Stephane Khazoom;S. Russek;S. Horii;S. Parmett;S. Pruthi;S. Decker;T. Nguyen;T. J. O’Loughlin;Terry C. Lynch;T. Auran;Todd A. Goldstein;T. Pietila;Tone Lindgren;Tracy S Chen;Vartan Malian;V. Gilsanz;Victor A McCoy;V. Jayaram;Vinicius V Alves;W. Brian Hyslop;Wael M. A. Abdalla;W. A. Carpenter;Wellington Eddy Reynaldo Paez Zumarraga;William Boswell;William C Prows;Xing;Yeong Shyan Lee;Yiwen Chen;Y. Anzai;Zheng Jin;A. Negreros;Andreas A. Giannopoulos;Andres Vasquez;B. Kumaev;Carissa White;E. Hern;ez;ez;E. Kikano;Elisa Spoldi;Jessica D Sh;Smith;J. Kerby;Kirk P Langheinz;Luis G Ricardez;Michael Bartellas;Narayana Vamyanmane Dhananjaya Kotebagilu;Sadia R Qamar;S. Islam;Vasanthakumar Venugopal;Vjekoslav Kopačin;Yu - 通讯作者:
Yu
The Price of Uncertainty in Security Games
安全游戏中不确定性的代价
- DOI:
10.1007/978-1-4419-6967-5_2 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Jens Grossklags;Benjamin Johnson;Nicolas Christin - 通讯作者:
Nicolas Christin
Benjamin Johnson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Johnson', 18)}}的其他基金
CAREER: Multi-channel, Sub-microliter Implants for Selective Neuromodulation
职业:用于选择性神经调节的多通道、亚微升植入物
- 批准号:
2236238 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SBIR Phase II: Improving farmer safety and grain storage efficiencies via an autonomous grain management and extraction robot
SBIR 第二阶段:通过自主粮食管理和提取机器人提高农民安全和粮食储存效率
- 批准号:
2321441 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Cooperative Agreement
ERI: Microscale Implants for Closed-loop Neuromodulation
ERI:用于闭环神经调节的微型植入物
- 批准号:
2138697 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
SBIR Phase I: Improving farmer safety and grain storage efficiencies via a remote-controlled grain management and extraction robot
SBIR 第一阶段:通过远程控制粮食管理和提取机器人提高农民安全和粮食储存效率
- 批准号:
2111555 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
EAR-PF: A new archive of Paleoarchean ocean chemistry: the 3.24 Ga Panorama volcanogenic massive sulfide district, Western Australia
EAR-PF:古太古代海洋化学的新档案:西澳大利亚 3.24 Ga Panorama 火山成因块状硫化物区
- 批准号:
1725784 - 财政年份:2017
- 资助金额:
$ 150万 - 项目类别:
Fellowship Award
相似国自然基金
三维血流问题的可扩展并行方法
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向可扩展量子比特调控的三维硅基光电混合集成芯片模型与关键技术研究
- 批准号:62274179
- 批准年份:2022
- 资助金额:59 万元
- 项目类别:面上项目
可模块化扩展双旋光结构三值光学处理器及其MSD乘法器的研究与应用—基于大规模数据运算背景
- 批准号:62262022
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
可扩展毫米波集成天线阵列关键技术研究
- 批准号:61904137
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
离子阱量子比特的可扩展三维集成硅光寻址与探测
- 批准号:61904196
- 批准年份:2019
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2341725 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
III: Medium: CARE: Interactive Systems for Scalable, Causal Data Science
III:媒介:CARE:可扩展因果数据科学的交互式系统
- 批准号:
2312561 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Continuing Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2415562 - 财政年份:2023
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
- 批准号:
2212508 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Standard Grant
III: SMALL: Scalable In-Database Prescriptive Analytics for Dynamic Environments
III:小型:适用于动态环境的可扩展数据库内规范分析
- 批准号:
2211918 - 财政年份:2022
- 资助金额:
$ 150万 - 项目类别:
Standard Grant