Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
基本信息
- 批准号:2154127
- 负责人:
- 金额:$ 4.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This award provides support for the conference "Conformal Geometry, Analysis, and Physics" to be held in Seattle from June 13-17, 2022. The field of conformal geometry has had rich interactions with both geometric analysis and physics, especially high-energy and condensed-matter physics, over the past three decades. The benefits have been bidirectional in both cases: conformal geometry has led to the development of new analytic tools infused by geometric intuitions, which in turn lead to the solution of important geometric problems. Similarly, physics is a source both of new problems and of important insights, while conformal geometry provides crucial tools in the solution of physical problems. This conference will bring together experts from all of these fields to share and discuss their research and benefit from each other's perspectives and tools. It is expected that the conference will stimulate further development in all three fields and cooperation across many kinds of boundaries. Facilitating entry of early-career researchers into dialog with all three areas is a particular goal for this event. A poster session will be held for students.Conformal geometry is the geometry of spaces where angles are defined, but not lengths. It has had a long and, recently, fast-growing relevance in physics, where it is a tool that provides new perspectives on many old phenomena. Conversely, physics has been a rich source of insights and problems in conformal geometry. For many years now, conformal geometry itself has provided some of the most compelling problems in geometric analysis, while techniques from analysis, scattering theory, and partial differential equations have enabled tremendous progress in the field. The primary goal of the conference is to bring together researchers from the three title areas whose work overlaps, in order to disseminate progress, share interesting problems, build relationships, and broaden perspectives. The conference will allow exposure to relevant state-of-the-art techniques in conformal geometry, analysis, and physics to be shared with other interested practitioners in each field. It will foster international collaboration between the US and other countries, and also collaboration between mathematicians and physicists. Junior participants will gain valuable insights, and relationships with more senior practitioners that may shape both their career and their mathematical (or physical) perspectives. Opportunity will be given for them to present their own work, and collaboration opportunities will exist between researchers at all levels. Most of the funding will be used to support junior mathematicians. Substantial effort will be made in recruiting women and members of other underrepresented groups in mathematics. The conference website is at https://personal.utdallas.edu/~sxm190098/graham65/ .This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项提供了对2022年6月13日至17日在西雅图举行的“共形几何学,分析和物理学”的支持。保形几何领域与几何分析和物理学,尤其是高能和高能和物理学都有丰富的相互作用在过去的三十年中,凝结的物理学。在这两种情况下,好处都是双向的:保形几何形状导致了由几何直觉注入的新分析工具的开发,进而导致解决重要的几何问题的解决方案。同样,物理学既是新问题和重要见解的来源,而保形几何形状为解决物理问题的解决方案提供了重要的工具。这次会议将汇集来自所有这些领域的专家,分享和讨论他们的研究并从彼此的观点和工具中受益。预计会议将刺激所有三个领域的进一步发展,并在许多界限上进行合作。促进早期研究人员进入与所有三个领域的对话是一个特殊的目标。将为学生举行海报会话。符合形状的几何形状是定义角度但不长度的空间的几何形状。它在物理学中具有漫长而又快速增长的相关性,它是一种为许多旧现象提供新观点的工具。相反,物理学一直是保形几何学的洞察力和问题的丰富来源。多年以来,保形几何本身在几何分析中提供了一些最引人注目的问题,而分析,散射理论和部分微分方程的技术已在该领域取得了巨大进步。会议的主要目标是将研究人员从三个标题领域的研究人员汇集在一起,这些领域的工作重叠,以传播进步,共享有趣的问题,建立关系和拓宽观点。该会议将允许与每个领域的其他有兴趣的从业人员共享保形几何,分析和物理学中相关的最新技术。它将促进美国与其他国家之间的国际合作,以及数学家与物理学家之间的合作。初级参与者将获得宝贵的见解,并与更多的高级从业人员的关系,这些从业人员可能会塑造他们的职业和数学(或物理)观点。他们将有机会展示自己的作品,并且在各级研究人员之间将存在协作机会。大多数资金将用于支持初级数学家。将在招募妇女和其他代表性不足的数学群体的成员方面做出巨大的努力。会议网站位于https://personal.utdallas.edu/~sxm190098/graham65/。这项奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响标准通过评估来进行评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gunther Uhlmann其他文献
Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \R^N
R^N 中可变指数的 Musielak-Orlicz-Morrey 空间上的极大函数、Riesz 势和 Sobolev 嵌入
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao;大野貴雄 - 通讯作者:
大野貴雄
Increasing stability of the inverse boundary value problem for the Schroedinger equation
提高薛定谔方程反边值问题的稳定性
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang - 通讯作者:
Jenn-Nan Wang
Note on the one-dimensional Holstein-Hubbard model
关于一维 Holstein-Hubbard 模型的注释
- DOI:
10.1007/s10955-012-0466-1 - 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao - 通讯作者:
Tadahiro Miyao
On determining a Riemannian manifold from the Dirichlet-to-Neumann map
从狄利克雷到诺依曼映射确定黎曼流形
- DOI:
- 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
BY Matti Lassas;Gunther Uhlmann - 通讯作者:
Gunther Uhlmann
Formal power series solutions of nonlinear partial differential equations and their multisummability
非线性偏微分方程的形式幂级数解及其多重可求性
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:0
- 作者:
Hiroshi Isozaki;Hideo Nakazawa;Gunther Uhlmann;S.Ouchi - 通讯作者:
S.Ouchi
Gunther Uhlmann的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gunther Uhlmann', 18)}}的其他基金
Applied Inverse Problems Conference 2019
2019年应用反问题会议
- 批准号:
1856116 - 财政年份:2019
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Applied Inverse Problems 2014 Conference Finland
2014 年芬兰应用反问题会议
- 批准号:
1500517 - 财政年份:2015
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
International Congress of Mathematical Physics 2015; Santiago, Chile; July 27-August 1, 2015
2015年国际数学物理大会;
- 批准号:
1505555 - 财政年份:2015
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Applied Inverse Problems 2013 Conference
应用反问题2013年会议
- 批准号:
1310868 - 财政年份:2013
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
International Conference on Inverse Problems and PDE Control
反问题和偏微分方程控制国际会议
- 批准号:
1201356 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Workshop on Coupled-Physics Inverse Problems
耦合物理反问题研讨会
- 批准号:
1301825 - 财政年份:2012
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
PASI on Inverse Problems and PDE Control;Valparaiso/Santiago, Chile; January 16-27, 2012
PASI 关于反问题和 PDE 控制;瓦尔帕莱索/圣地亚哥,智利;
- 批准号:
1122928 - 财政年份:2011
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
相似国自然基金
椭球几何学与任意高斯投影数学分析
- 批准号:41871376
- 批准年份:2018
- 资助金额:57.5 万元
- 项目类别:面上项目
西秦岭北缘断裂带新生代构造变形几何学-运动学分析及构造变形演化
- 批准号:41772215
- 批准年份:2017
- 资助金额:69.0 万元
- 项目类别:面上项目
南海古双峰-笔架造山带构造几何学重建
- 批准号:41476039
- 批准年份:2014
- 资助金额:93.0 万元
- 项目类别:面上项目
离散数学中的样条方法研究
- 批准号:11301060
- 批准年份:2013
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
样条函数在离散数学中的应用
- 批准号:11226326
- 批准年份:2012
- 资助金额:3.0 万元
- 项目类别:数学天元基金项目
相似海外基金
Analysis and Geometry of Conformal and Quasiconformal Mappings
共形和拟共形映射的分析和几何
- 批准号:
2350530 - 财政年份:2024
- 资助金额:
$ 4.5万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Ergodic theory for conformal dynamics with applications to fractal geometry
共形动力学的遍历理论及其在分形几何中的应用
- 批准号:
21K03269 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 4.5万 - 项目类别: