Workshop on Coupled-Physics Inverse Problems

耦合物理反问题研讨会

基本信息

  • 批准号:
    1301825
  • 负责人:
  • 金额:
    $ 2.16万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2012
  • 资助国家:
    美国
  • 起止时间:
    2012-12-01 至 2013-11-30
  • 项目状态:
    已结题

项目摘要

The workshop will be organized in partnership with the center of Modelamiento Matemático (CMM) of the University of Chile in Santiago and will be held Jan. 3-5, 2013 at CMM in Santiago, Chile. The organizers are Matias Courdurier from the Pontificia Universidad Católica de Chile, Jaime Ortega and Axel Osses from CMM and Gunther Uhlmann from the University of Washington. The focus of the conference will be on "coupled-physics" or "hybrid" imaging modalities that have received a lot of attention in recent years due to the great promises they hold for medical imaging and other fields. By combining two or three different types of waves (or physical fields) these methods overcome limitations of classical tomography techniques and deliver otherwise unavailable, potentially life-saving diagnostic information. Among these methods are the Thermoacoustic Tomography (TAT), Photo-Acoustic Tomography (PAT), Ultrasound Modulated Optical and Impedance Tomographies (UMOT, UMEIT), Magneto-Acousto-Electric Tomography (MAET) and several other modalities combining magnetic fields with ultrasound scanning of the tissue. Closely related to these methods are so-called combined physics modalities such as Current Density Imaging and Elastography. Besides medical imaging there has been also recent interest on coupled-physics inverse methods in oil exploration in particular on the Seismo-electric effect.One of the goals of this workshop is to give the participants, in particular junior mathematicians, the opportunity of learning the state of the art in research on coupled-physics inverse problems and discuss future directions and problems. Another goal is to foster the interaction between researchers in inverse problems in Chile, the US and other countries of Latin America, and to also have increased interaction between junior and senior researchers in these fields.
该研讨会将与Santiago J an的Celamiento Matemuredico(CMM)合作组织。 Jaime Ortega和Axel Osses来自CMM和Ththther Uhlmannn的华盛顿大学。波的类型克服极限层析成像技术并提供超其他明智的诊断信息。与这些方法紧密相关的组织的扫描是所谓的合并方式,例如密度成像和弹性曲目。在参与者中,尤其是数学家共同提出的逆问题,并讨论未来的方向和问题。同样,HABE在HESE领域的初级和高级人员之间的互动。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gunther Uhlmann其他文献

Maximal functions, Riesz potentials and Sobolev embeddings on Musielak-Orlicz-Morrey spaces of variable exponent in \R^N
R^N 中可变指数的 Musielak-Orlicz-Morrey 空间上的极大函数、Riesz 势和 Sobolev 嵌入
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao;大野貴雄
  • 通讯作者:
    大野貴雄
Increasing stability of the inverse boundary value problem for the Schroedinger equation
提高薛定谔方程反边值问题的稳定性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Victor Isakov;Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang
  • 通讯作者:
    Jenn-Nan Wang
Note on the one-dimensional Holstein-Hubbard model
关于一维 Holstein-Hubbard 模型的注释
  • DOI:
    10.1007/s10955-012-0466-1
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sei Nagayasu;Gunther Uhlmann;Jenn-Nan Wang;大野 貴雄;日比野 正樹;Mervan Pasic and Satoshi Tanaka;鈴木政尋;Tadahiro Miyao
  • 通讯作者:
    Tadahiro Miyao
On determining a Riemannian manifold from the Dirichlet-to-Neumann map
从狄利克雷到诺依曼映射确定黎曼流形
  • DOI:
  • 发表时间:
    2001
  • 期刊:
  • 影响因子:
    0
  • 作者:
    BY Matti Lassas;Gunther Uhlmann
  • 通讯作者:
    Gunther Uhlmann
Formal power series solutions of nonlinear partial differential equations and their multisummability
非线性偏微分方程的形式幂级数解及其多重可求性

Gunther Uhlmann的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gunther Uhlmann', 18)}}的其他基金

Conformal Geometry, Analysis, and Physics
共形几何、分析和物理
  • 批准号:
    2154127
  • 财政年份:
    2022
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
Mathematics for Imaging with Waves
波成像数学
  • 批准号:
    2105956
  • 财政年份:
    2021
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
Applied Inverse Problems Conference 2019
2019年应用反问题会议
  • 批准号:
    1856116
  • 财政年份:
    2019
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
Inverse Boundary Problems
逆边界问题
  • 批准号:
    1800453
  • 财政年份:
    2018
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Continuing Grant
Applied Inverse Problems 2014 Conference Finland
2014 年芬兰应用反问题会议
  • 批准号:
    1500517
  • 财政年份:
    2015
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
International Congress of Mathematical Physics 2015; Santiago, Chile; July 27-August 1, 2015
2015年国际数学物理大会;
  • 批准号:
    1505555
  • 财政年份:
    2015
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
Applied Inverse Problems 2013 Conference
应用反问题2013年会议
  • 批准号:
    1310868
  • 财政年份:
    2013
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
Inverse Boundary Problems
逆边界问题
  • 批准号:
    1265958
  • 财政年份:
    2013
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Continuing Grant
International Conference on Inverse Problems and PDE Control
反问题和偏微分方程控制国际会议
  • 批准号:
    1201356
  • 财政年份:
    2012
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant
PASI on Inverse Problems and PDE Control;Valparaiso/Santiago, Chile; January 16-27, 2012
PASI 关于反问题和 PDE 控制;瓦尔帕莱索/圣地亚哥,智利;
  • 批准号:
    1122928
  • 财政年份:
    2011
  • 资助金额:
    $ 2.16万
  • 项目类别:
    Standard Grant

相似国自然基金

物理交联水凝胶动态交联与大变形耦合研究
  • 批准号:
    12372165
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
海底动态直流电缆电-热-力多物理场耦合机理及状态监测技术研究
  • 批准号:
    52371283
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑电-热多物理耦合场的储能电池组动态均衡理论与技术
  • 批准号:
    52377017
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
贫油工况下航空发动机主轴承多物理场耦合建模及性能退化机理研究
  • 批准号:
    52305199
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于先验物理知识深度学习的车辆-轨道耦合动力学研究
  • 批准号:
    52372400
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

U-RISE at City College of New York
纽约城市学院 U-RISE
  • 批准号:
    10629917
  • 财政年份:
    2023
  • 资助金额:
    $ 2.16万
  • 项目类别:
World Molecular Imaging Congress
世界分子成像大会
  • 批准号:
    10753964
  • 财政年份:
    2023
  • 资助金额:
    $ 2.16万
  • 项目类别:
Education and Enrichment Core
教育和充实核心
  • 批准号:
    10490417
  • 财政年份:
    2021
  • 资助金额:
    $ 2.16万
  • 项目类别:
Education and Enrichment Core
教育和充实核心
  • 批准号:
    10282410
  • 财政年份:
    2021
  • 资助金额:
    $ 2.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了