CRII: CIF: A Sparse Framework Based Automotive Radar Sensing for Autonomous Vehicles

CRII:CIF:基于稀疏框架的自动驾驶汽车雷达传感

基本信息

  • 批准号:
    2153386
  • 负责人:
  • 金额:
    $ 17.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2). Millimeter-wave automotive radar has emerged as a key technology in autonomous driving in order to provide environmental perception under all weather conditions. However, successful deployment is facing several challenges. First, automotive radars are required to have high angular resolution in both azimuth and elevation directions in order to produce point clouds representing the shapes of objects and enable target identification. Enlarging antenna array apertures by simply increasing the number of antenna array elements involves both a huge cost and a large form factor, and is not feasible in automotive radar applications. Furthermore, as more vehicles are equipped with radar, the probability of mutual radar interference increases. This project aims to explore a novel joint sparse-frequency and sparse-array signal-processing framework that enables high-resolution environment perception for autonomous vehicles with low-cost, small form factor and low probability of mutual interference. The project will result in algorithms that are applicable to various radar-sensing applications, including the remote sensing of vital signs of patients in telemedicine, a crucial need during the COVID-19 pandemic. The proposed educational plan creates opportunities to guide senior Capstone designs, enriches curriculum in radar-signal-processing courses, and facilitates outreach for minority students through an existing multicultural engineering program. It is challenging to achieve high angular resolution by adopting sparse arrays synthesized via multiple-input and multiple-output radar techniques because the high side lobe associated with sparse arrays would result in angle ambiguity. In addition, conventional radar chirps occupying a large bandwidth with a constant pulse-repetition frequency greatly increase the chance of mutual interference. The technical aims of the project are organized into two tasks. The first task investigates a matrix completion-based array interpolation approach to fill the holes of both one- and two-dimensional sparse arrays. The relationship between the recoverability of low-rank radar data matrices and the irregular sparse-array geometry will be investigated. In order to effectively complete irregular sparse arrays, efficient iterative hard thresholding matrix-completion algorithms will exploit the structures and properties of the underlying low-rank Hankel and block Hankel matrices. The second task investigates a cognitive approach to sparsely allocate the radar chirps in both frequency and temporal domains in order to synthesize a high-resolution range profile while significantly reducing the probability of mutual interference. This task will design novel optimization methods to dynamically allocate the transmit chirps under both interference and range-Doppler peak side lobe constraints by relaxing integer variables for efficient computations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年《美国救援计划法》(公法117-2)全部或部分资助的。毫米波汽车雷达已成为自动驾驶的关键技术,以便在所有天气条件下提供环境感知。但是,成功的部署面临着几个挑战。首先,需要汽车雷达在方位角和高程方向上具有高角度分辨率,以产生代表对象形状的点云并实现目标识别。通过简单地增加天线阵列元件的数量来扩大天线阵列孔径既涉及巨大的成本又涉及大型外形,并且在汽车雷达应用中不可行。此外,随着越来越多的车辆配备雷达,相互雷达干扰的可能性增加。该项目旨在探索一种新型的关节稀疏频率和稀疏的信号处理框架,该框架能够对具有低成本,小型且相互干扰的概率的自动驾驶汽车进行高分辨率的环境感知。该项目将导致适用于各种雷达感应应用的算法,包括远程医疗患者生命体征的遥感,这是Covid-19-19大流行期间的至关重要的需求。拟议的教育计划为指导高级顶峰设计,丰富了雷达信号处理课程的课程提供了机会,并通过现有的多元文化工程计划为少数民族学生提供促进的范围。通过采用通过多输入和多输出雷达技术合成的稀疏阵列来实现高角度分辨率是一项挑战,因为与稀疏阵列相关的高侧叶会导致角度歧义。另外,占据恒定脉冲重复频率的大带宽占据较大的带宽大大增加了相互干扰的机会。该项目的技术目标被组织为两项任务。第一个任务研究了基于矩阵完成的阵列插值方法,以填充一维稀疏阵列的孔。将研究低排名雷达数据矩阵的可恢复性与不规则稀疏阵列几何形状之间的关系。为了有效完成不规则的稀疏阵列,有效的迭代硬阈值矩阵完成算法将利用基础低级别Hankel的结构和特性,并阻止Hankel矩阵。第二个任务研究了一种认知方法,以稀疏的频率和时间域分配雷达呼吸,以便综合高分辨率范围,同时显着降低了相互干扰的可能性。该任务将设计新颖的优化方法,以通过放松整数变量以进行有效计算,在干扰和范围多普勒峰侧叶限制下动态分配发出呼吸。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子和更广泛的影响来评估的支持,并被认为是值得的。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Deep Reinforcement Learning Approach for Integrated Automotive Radar Sensing and Communication
Fast Forward-Backward Hankel Matrix Completion for Automotive Radar DOA Estimation Using Sparse Linear Arrays
  • DOI:
    10.1109/radarconf2351548.2023.10149466
  • 发表时间:
    2023-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunqiao Sun;Yining Wen;Ryan Wu;D. Ren;Jun Li
  • 通讯作者:
    Shunqiao Sun;Yining Wen;Ryan Wu;D. Ren;Jun Li
Spectranet: A High Resolution Imaging Radar Deep Neural Network for Autonomous Vehicles
Spectranet:用于自动驾驶车辆的高分辨率成像雷达深度神经网络
Coprime Visible Regions Assisted Angle Unfolding for Sparse ESPRIT
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shunqiao Sun其他文献

Redefining Automotive Radar Imaging: A Domain-Informed 1D Deep Learning Approach for High-Resolution and Efficient Performance
重新定义汽车雷达成像:一种基于领域的一维深度学习方法,可实现高分辨率和高效性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ru;Shunqiao Sun;Holger Caesar;Honglei Chen;Jian Li
  • 通讯作者:
    Jian Li
Interpretable and Efficient Beamforming-Based Deep Learning for Single Snapshot DOA Estimation
用于单快照 DOA 估计的可解释且高效的基于波束成形的深度学习
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4.3
  • 作者:
    Ru;Shunqiao Sun;Hongshan Liu;Honglei Chen;Jian Li
  • 通讯作者:
    Jian Li
Investigation of microwave transducers for linearity dependence and applications in quantum networking
微波换能器线性依赖性的研究及其在量子网络中的应用
  • DOI:
    10.1117/12.2633522
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Summer Bolton;Joseph T. Lukens;Carson E. Moseley;Maddy Woodson;S. Estrella;Shunqiao Sun;S. Kim;P. Kung
  • 通讯作者:
    P. Kung
Ieee Transactions on Aerospace and Electronic Systems 1 Mimo-mc Radar: a Mimo Radar Approach Based on Matrix Completion
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunqiao Sun
  • 通讯作者:
    Shunqiao Sun
Interference Mitigation in Automotive Radars
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shunqiao Sun
  • 通讯作者:
    Shunqiao Sun

Shunqiao Sun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shunqiao Sun', 18)}}的其他基金

CAREER: Towards Fundamentals of Adaptive, Collaborative and Intelligent Radar Sensing and Perception
职业:探索自适应、协作和智能雷达传感和感知的基础知识
  • 批准号:
    2340029
  • 财政年份:
    2024
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

SHR和CIF协同调控植物根系凯氏带形成的机制
  • 批准号:
    31900169
  • 批准年份:
    2019
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CIF:Small:Learning Sparse Vector and Matrix Graphs from Time-Dependent Data
CIF:小:从瞬态数据中学习稀疏向量和矩阵图
  • 批准号:
    2308473
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236484
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Robust Machine Learning under Sparse Adversarial Attacks
协作研究:CIF:小型:稀疏对抗攻击下的鲁棒机器学习
  • 批准号:
    2236483
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
CIF: Small: Projective limits of sparse graphs
CIF:小:稀疏图的投影极限
  • 批准号:
    2311160
  • 财政年份:
    2023
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Deep Sparse Models: Analysis and Algorithms
合作研究:CIF:小型:深度稀疏模型:分析和算法
  • 批准号:
    2240708
  • 财政年份:
    2022
  • 资助金额:
    $ 17.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了