EAGER: Develop Robust Light-Scattering Computational Capability Based on the Method of Separation of Variables in Spheroidal Coordinates for Small-to-Large Spheroids

EAGER:基于从小到大球体的球体坐标中的变量分离方法,开发鲁棒的光散射计算能力

基本信息

  • 批准号:
    2153239
  • 负责人:
  • 金额:
    $ 19.96万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2023-11-30
  • 项目状态:
    已结题

项目摘要

Dust aerosols affect global climate by partially absorbing and reflecting incoming sunlight and heat energy emitted by the atmosphere and the surface. The optical properties of dust particles are critical to reducing uncertainties in the current knowledge of the role of dust aerosols in the climate system, and thus are important for predicting future climate. The dust particle optical properties are also fundamental for inferring dust aerosol characteristics from space-borne and ground-based remote sensing observations. Dust particles are almost exclusively nonspherical. It has been extensively demonstrated that the spheroidal particle shape model represents a quantum leap forward, compared to the spherical model, for computing the optical properties of nonspherical particles. At present, the optical properties of small-to-large particles can be computed only for spheres. There is a pressing need to have an exact and robust computational capability to compute the optical properties of spheroidal particles. Leveraging advances in computational mathematics, advances in electromagnetic scattering theories, and modern computer technologies and computer coding techniques, this project aims to develop a novel program to compute the optical properties of spheroidal particle in the small-to-large particle size range. Because many bacteria, microweeds, oceanic particles, and interstellar dust particles have approximately spheroidal shapes, the outcome of this project will also find extensive applications in climate science (particularly the radiative energy budget in the climate system), remote sensing, industry, bio-optics, oceanic optics, astrophysics, planetary sciences, and other fields beyond atmospheric sciences. Because this project focuses on a major unsolved interdisciplinary problem and because of significant challenges, particularly from the perspective of computational electromagnetics and mathematics, this project is exploratory but potentially transformative, i.e., “high risk – high payoff”. In addition to its scientific merit, this project contains an educational component to train an early-career researcher in the interdisciplinary area mentioned above. This project aims to solve light scattering by a spheroid in spheroidal coordinates. Although solving the electromagnetic wave equation via the method of separation of variables in spheroid coordinates has been explored, the previously developed models are applicable only to particles that are small with respect to the incident wavelength and have little practical use. The major challenge encountered by the previous effort is numerical instability of spheroidal harmonic functions. This project will seek to achieve numerical stability of spheroidal harmonic functions by using advanced algorithms, such as expressing spheroidal functions in terms of the Wigner-d function. The key to computing spheroidal functions is to find eigenvalues of corresponding spheroidal equations. The radial and angular spheroidal equations are of the Sturm-Liouville type. The eigenvalues will be calculated by the invariant-imbedding method, which is expected to be numerically stable and accurate. Thus, the spheroidal functions are expected to be accurate even with extreme parameters. The overarching goal of this project is to develop a numerically stable capability for accurately computing the optical properties of a spheroid beyond the currently applicable particle size and aspect ratio ranges of other existing computational capabilities, such as the discrete dipole approximation method (DDA), the finite-difference time domain (FDTD) method, the extended boundary condition method (EBCM), and the invariant imbedding T-matrix method (IITM).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尘埃气溶胶通过部分吸收和反映传入的阳光和大气和表面发出的热能来影响全球气候。灰尘颗粒的光学特性对于减少尘埃气溶胶在气候系统中作用的不确定性至关重要,因此对于预测未来气候至关重要。灰尘颗粒光学性能也是从太空传播和基于地面的遥感观测值来推断尘埃气溶胶特性的基础。灰尘颗粒几乎完全非球。已经广泛证明,与球体模型相比,球形粒子形状模型代表了一个量子飞跃,用于计算非球体的光学性质。目前,只能针对球体计算小型粒子的光学性质。迫切需要具有确切且可靠的计算能力,以计算球形数学的前进性能的光学特性,电磁散射理论的进步以及现代的计算机技术和计算机编码技术,该项目旨在开发一个新颖的程序来开发一个新的程序,以计算一个小粒子的光学特性。因为许多细菌,微型齿,海洋颗粒和固定尘埃颗粒具有大致的球形形状,因此该项目的结果还将在气候科学(部分在气候系统中的辐射能量预算),远程敏感性,工业,生物选择,大洋洲光学,大洋天文学,平面物,其他气氛,其他气氛,其他风格,以及其他气氛,其他风格,以及其他大气层,其他风格,其他。因为该项目着重于一个主要的未解决的跨学科问题,并且由于面临重大挑战,尤其是从计算电磁学和数学的角度来看,因此该项目是探索性但潜在的变革性的,即“高风险 - 高收益”。除科​​学优点外,该项目还包含一个教育组成部分,以培训上述跨学科领域的早期研究人员。该项目旨在解决球形坐标中球形的光散射。尽管已经探索了通过在球体坐标中分离变量的方法来求解电磁波方程,但先前开发的模型仅适用于相对于入射波长很小的粒子,几乎没有实际使用。以前的努力遇到的主要挑战是球形谐波函数的数值不稳定性。该项目将寻求通过使用高级算法(例如根据Wigner-D函数表达球形函数)来实现球形谐波函数的数值稳定性。计算球形函数的关键是找到相应的球形方程的特征值。径向和角球形方程是Sturm-Liouville类型的。特征值将通过不变式的方法来计算,该方法有望单独稳定且准确。这是,即使使用极端参数,球形函数也有望准确。 The overarching goal of this project is to develop a numerically stable capability for accurately computing the optical properties of a sphere beyond the currently applicable particle size and aspect ratio ranges of other existing computational capabilities, such as the discrete dipole approximation method (DDA), the finite-difference time domain (FDTD) method, the extended boundary condition method (EBCM), and the invariant imbedding T-matrix method (IITM)。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子优点和更广泛的影响评估标准来评估,被认为是珍贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ping Yang其他文献

Effects of Triptergium Glycosides on Expressions of MCP- 1 and CTGF in Rats with Early Diabetic Nephropathy
雷公藤多苷对早期糖尿病肾病大鼠MCP-1、CTGF表达的影响
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ji;Y. Zhang;Xiaohui Yin;Ping Yang;Hai;Yaling Guo;Wei
  • 通讯作者:
    Wei
Gene-expression profiling in lung cancer: still early days.
肺癌的基因表达谱:仍处于早期阶段。
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ping Yang;Zhifu Sun
  • 通讯作者:
    Zhifu Sun
Noble-metal-free hetero-structural CdS/Nb2O5/N-doped-graphene ternary photocatalytic system as visible-light-driven photocatalyst for hydrogen evolution
无贵金属异质结构CdS/Nb2O5/N掺杂石墨烯三元光催化体系作为可见光驱动光催化剂析氢
  • DOI:
    10.1016/j.apcatb.2016.08.028
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zongkuan Yue;Aijun Liu;Chunyong Zhang;Jie Huang;Mingshan Zhu;Yukou Du;Ping Yang
  • 通讯作者:
    Ping Yang
Inhibition of Fatty Acid Translocase (FAT/CD36) Palmitoylation Enhances Hepatic Fatty Acid β-Oxidation by Increasing Its Localization to Mitochondria and Interaction with Long-Chain Acyl-CoA Synthetase 1
抑制脂肪酸转位酶 (FAT/CD36) 棕榈酰化通过增加其在线粒体中的定位以及与长链酰基辅酶 A 合成酶 1 的相互作用来增强肝脂肪酸 β 氧化
  • DOI:
    10.1089/ars.2021.0157
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shu Zeng;Fan Wu;Mengyue Chen;Yi Fan Li;Mengyue You;Yang Zhang;Ping Yang;Li Wei;Xiong Z. Ruan;Lei Zhao;Yaxi Chen
  • 通讯作者:
    Yaxi Chen
Synthesis of magnetic Ag3PO4/Ag/NiFe2O4 composites towards super photocatalysis andmagnetic separation
磁性 Ag3PO4/Ag/NiFe2O4 复合材料的合成及其超强光催化和磁分离

Ping Yang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ping Yang', 18)}}的其他基金

CyberCorps Scholarship for Service: Expanding and Strengthening the National Cybersecurity Workforce
Cyber​​Corps 服务奖学金:扩大和加强国家网络安全劳动力
  • 批准号:
    2146212
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
Development of Community Light Scattering Computational Capabilities
社区光散射计算能力的发展
  • 批准号:
    1826936
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CICI: RSARC: Infrastructure Support for Securing Large-Scale Scientific Workflows
CICI:RSARC:确保大规模科学工作流程安全的基础设施支持
  • 批准号:
    1738929
  • 财政年份:
    2017
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Systematic Evaluation and Further Improvement of Present Broadband Radiative Transfer Modeling Capabilities
合作研究:现有宽带辐射传输建模能力的系统评估和进一步改进
  • 批准号:
    1632209
  • 财政年份:
    2016
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Collaborative Research: Inferring Marine Particle Properties from Polarized Volume Scattering Functions
合作研究:从偏振体散射函数推断海洋颗粒特性
  • 批准号:
    1459180
  • 财政年份:
    2015
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Development of Rigorous Computational Capabilities Based on the Invariant Imbedding Principle for the Simulation of the Optical Properties of Dust and Ice Crystals
基于不变嵌入原理的严格计算能力的发展,用于模拟灰尘和冰晶的光学特性
  • 批准号:
    1338440
  • 财政年份:
    2013
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Standard Grant
Study Dust Optical and Radiative Properties Using Optimal Morphological Sets
使用最佳形态集研究灰尘光学和辐射特性
  • 批准号:
    0803779
  • 财政年份:
    2008
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant
CAREER: Investigation of the Scattering and Radiative Properties of Ice and Mixed-Phase Clouds
职业:研究冰和混合相云的散射和辐射特性
  • 批准号:
    0239605
  • 财政年份:
    2003
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Continuing Grant

相似国自然基金

剪接因子SNRPA1通过调节R-loop稳态影响肺腺癌发展进程的机制研究
  • 批准号:
    32360143
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
  • 批准号:
    32371366
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
企业层面视角下自由贸易协定条款深度对出口高质量发展的影响:模型拓展与量化分析
  • 批准号:
    72363013
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
新型城镇化与区域协调发展的机制与治理体系研究
  • 批准号:
    72334006
  • 批准年份:
    2023
  • 资助金额:
    167 万元
  • 项目类别:
    重点项目
亦正亦邪Sirt6:Sirt6调控谷氨酰胺代谢促进肝内胆管癌发生发展的分子机制研究
  • 批准号:
    82372667
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Develop High Rate and Robust Quantum Channels for Next Generation Ground to Space Quantum Links
为下一代地对空量子链路开发高速率和鲁棒的量子通道
  • 批准号:
    569351-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Robust AI to develop risk models in retinopathy of prematurity using deep learning
强大的人工智能利用深度学习开发早产儿视网膜病变的风险模型
  • 批准号:
    10254429
  • 财政年份:
    2020
  • 资助金额:
    $ 19.96万
  • 项目类别:
Using electrical conductivity to develop a robust discharge model for a coastal mountain catchment
利用电导率开发沿海山区流域的稳健放电模型
  • 批准号:
    528465-2018
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Quantitative Proteomics to Develop Robust Senescence-Related Biomarkers for Aging
定量蛋白质组学开发强大的衰老相关生物标志物
  • 批准号:
    9906152
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
Quantitative Proteomics to Develop Robust Senescence-Related Biomarkers for Aging
定量蛋白质组学开发强大的衰老相关生物标志物
  • 批准号:
    10403934
  • 财政年份:
    2018
  • 资助金额:
    $ 19.96万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了