CAS- Climate: CDS&E: Facilitating Sustainable and Fair Transformation of GSI through AI

CAS-气候:CDS

基本信息

  • 批准号:
    2152834
  • 负责人:
  • 金额:
    $ 49.95万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-15 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

As climate change exacerbates environmental challenges associated with urban growth, green stormwater infrastructure (GSI) is a prevalent stormwater mitigation strategy to provide resilience and mitigate the impacts of development on flooding. In parallel, fully sustainable GSI systems must confront the challenges of historically unequitable distribution of infrastructure. The current data revolution has reached municipal stormwater programs; however, these programs are limited by a lack of knowledge of GSI life-cycle dynamics, high performance and emerging computational tools, and how to integrate new science into design and planning decisions. There is a scientific gap in the space formed among GSI design, performance function, and planning decisions that requires bridging hydrologic science, urban planning, and data analytics. This project leverages innovations in artificial intelligence (AI), advancements in the empirical and theoretical understanding of urban hydrologic science, and social data to produce a new model of GSI dynamics that considers social and environmental equity issues. This model will flip the paradigm of infrastructure planning and put the impact on society and the environment on par with engineering solutions to flooding. The model will be made available for use by public and private practitioners to plan, develop, and manage more sustainable and equitable GSI, and by researchers to deepen convergent knowledge of the complex social issues associated with urban flooding. The current state of GSI research is ripe for the application of AI techniques to advance GSI knowledge to discern key parameters, optimize GSI design and development, and enable future performance forecasts in a changing environment. For this project, civil engineers, computer scientists, and geographers are joining together to produce a new platform that uses AI in a dynamic environment with multiple data modalities, ranging from their spatial and temporal characteristics to data types. The research framework acknowledges the wider implications of GSI and its high interdependency and connection to the surrounding community and aims to improve social justice of GSI design through an equity-aware AI model. This project will use a large GSI monitoring relational database (housed at Villanova University) by combining GSI performance data and city-wide open data and applying machine learning methods to develop predictive models applicable across the US. This work targets advancing understanding of GSI dynamics by forecasting the performance of GSIs for a given array of conditions and constraints in urban settings to equitably maximize GSI community benefits. The project will support a diverse faculty team and engage students, urban communities, and industry and academic colleagues by: (1) creating state-of- the-art research and mentoring opportunities for graduate and undergraduate students from underrepresented backgrounds, (2) developing and delivering GSI learning modules for practitioners, and (3) integrating and promoting issues of equity and sustainability within urban stormwater management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着气候变化加剧与城市发展相关的环境挑战,绿色雨水基础设施(GSI)是一种流行的雨水缓解策略,可提供抵御能力并减轻发展对洪水的影响。与此同时,完全可持续的 GSI 系统必须面对历史上基础设施分配不公平的挑战。当前的数据革命已经影响到市政雨水计划;然而,这些项目由于缺乏对 GSI 生命周期动态、高性能和新兴计算工具以及如何将新科学融入设计和规划决策的了解而受到限制。 GSI 设计、性能功能和规划决策之间存在科学差距,需要将水文科学、城市规划和数据分析联系起来。该项目利用人工智能 (AI) 创新、城市水文科学实证和理论理解的进步以及社会数据,产生考虑社会和环境公平问题的 GSI 动态新模型。该模型将颠覆基础设施规划的范式,将对社会和环境的影响与洪水工程解决方案相媲美。该模型将供公共和私人从业者使用,以规划、开发和管理更可持续和公平的 GSI,并供研究人员使用,以加深对与城市洪水相关的复杂社会问题的聚合知识。 GSI 研究的现状已经成熟,可以应用人工智能技术来推进 GSI 知识,以识别关键参数、优化 GSI 设计和开发,并在不断变化的环境中实现未来的性能预测。在这个项目中,土木工程师、计算机科学家和地理学家共同开发了一个新平台,该平台在动态环境中使用人工智能,具有多种数据模式,从空间和时间特征到数据类型。该研究框架承认 GSI 的更广泛影响及其与周围社区的高度相互依赖性和联系,旨在通过具有公平意识的人工智能模型改善 GSI 设计的社会正义。该项目将使用大型 GSI 监控关系数据库(位于维拉诺瓦大学),结合 GSI 性能数据和全市开放数据,并应用机器学习方法来开发适用于全美国的预测模型。这项工作的目标是通过预测 GSI 在城市环境中给定条件和约束条件下的表现来增进对 GSI 动态的理解,以公平地最大化 GSI 社区利益。该项目将支持多元化的教师团队,并通过以下方式吸引学生、城市社区、行业和学术同事:(1) 为来自弱势背景的研究生和本科生创造最先进的研究和指导机会,(2) 发展并为从业者提供 GSI 学习模块,以及 (3) 在城市雨水管理中整合和促进公平和可持续性问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Virginia Smith其他文献

Guardrail Baselines for Unlearning in LLMs
法学硕士遗忘的护栏基线
  • DOI:
    10.48550/arxiv.2403.03329
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Pratiksha Thaker;Yash Maurya;Virginia Smith
  • 通讯作者:
    Virginia Smith
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold
针对不正确合成数据的强化学习将 LLM 数学推理的效率提高了八倍
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amrith Rajagopal Setlur;Saurabh Garg;Xinyang Geng;Naman Garg;Virginia Smith;Aviral Kumar
  • 通讯作者:
    Aviral Kumar
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Grass:使用结构化稀疏梯度计算高效的低内存 LLM 训练
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Aashiq Muhamed;Oscar Li;David Woodruff;Mona Diab;Virginia Smith
  • 通讯作者:
    Virginia Smith
Is Support Set Diversity Necessary for Meta-Learning?
支持集多样性对于元学习是必要的吗?
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Amrith Rajagopal Setlur;Oscar Li;Virginia Smith
  • 通讯作者:
    Virginia Smith
Learning Context-Aware Policies from Multiple Smart Homes via Federated Multi-Task Learning
通过联合多任务学习从多个智能家居学习情境感知策略

Virginia Smith的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Virginia Smith', 18)}}的其他基金

Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
  • 批准号:
    2320356
  • 财政年份:
    2023
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
CAREER: Foundations of Federated Multi-Task Learning
职业:联合多任务学习的基础
  • 批准号:
    2145670
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Continuing Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
  • 批准号:
    2228035
  • 财政年份:
    2022
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant
Collaborative Research: An Inter-disciplinary Approach to Constraining Paleo-geomorphic Responses to the Eocene-Oligocene Hothouse to Icehouse Transition
合作研究:限制始新世-渐新世温室向冰室转变的古地貌响应的跨学科方法
  • 批准号:
    1844180
  • 财政年份:
    2019
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Standard Grant

相似国自然基金

协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
  • 批准号:
    42371397
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
气候梯度下云南典型草地土壤微生物群落调控碳利用效率机制的研究
  • 批准号:
    32301439
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
季风边缘带树轮记录的800年关键水文气候要素响应与重构
  • 批准号:
    52379015
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
胡杨叶性状适应荒漠化气候的遗传与进化机制
  • 批准号:
    32371838
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
气候变化下南中国海海洋动力要素预测及其对珊瑚礁海岸洪水风险的影响研究
  • 批准号:
    42376201
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Store Electricity and Heat foR climatE Neutral Europe (SEHRENE)
为欧洲气候中和储存电力和热能 (SEHRENE)
  • 批准号:
    10105664
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    EU-Funded
Advancing Governance and Resilience for Climate Adaptation through Cultural Heritage (AGREE)
通过文化遗产促进气候适应的治理和抵御能力(同意)
  • 批准号:
    AH/Z000017/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Research Grant
Multiscale Approaches And Scalability Within Climate Change-heritage Risk Assessments
气候变化遗产风险评估中的多尺度方法和可扩展性
  • 批准号:
    AH/Z000084/1
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Research Grant
Identifying potential trade-offs of adapting to climate change
确定适应气候变化的潜在权衡
  • 批准号:
    DP240100230
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Discovery Projects
Advancing Child and Youth-led Climate Change Education with Country
与国家一起推进儿童和青少年主导的气候变化教育
  • 批准号:
    DP240100968
  • 财政年份:
    2024
  • 资助金额:
    $ 49.95万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了