CAREER: Foundations of Federated Multi-Task Learning
职业:联合多任务学习的基础
基本信息
- 批准号:2145670
- 负责人:
- 金额:$ 59.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2027-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Mobile phones, wearable devices, and smart homes form just a few of the modern distributed networks generating a wealth of data each day. Due to the growing computational power of edge devices, coupled with concerns over transmitting private data, it is increasingly attractive to store data locally and push network computation to the edge. Federated learning explores training machine learning models at the edge in distributed networks. While federated learning has shown tremendous promise for enabling edge applications, practical deployment is currently stymied by a number of competing constraints. In addition to being accurate, federated learning methods must scale to potentially massive networks of devices, and must exhibit trustworthy behavior---addressing pragmatic concerns related to issues such as user privacy, fairness, and robustness. In this project, we explore multi-task learning, a technique that learns separate but related models for each device in the network, as a unified approach to address the competing constraints of federated learning. The objective of the project is to develop scalable multi-task learning methods that are suitable for practical federated networks, and to rigorously study the foundational properties of federated multi-task learning in terms of the goals of accuracy, scalability, and trustworthiness. In doing so, the research will unlock a new generation of federated learning systems that can holistically address the constraints of realistic federated networks.The goal of this project is to establish and rigorously study the use of federated multi-task learning. While the accuracy benefits of federated multi-task learning are well-known, the work charts two new directions. First, the project develops methods to realize multi-task learning at scale in massive federated networks. Secondly, the project shows that multi-task learning, by improving privacy, fairness, and robustness, is in fact key for trustworthy federated learning. The technical aims of the project work are divided into three thrusts. First, by approximating standard notions of multi-task learning, the project will develop and rigorously study a family of highly scalable federated multi-task learning objectives. Second, the privacy implications of multi-task learning will be analyzed and evaluated in order to understand trade-offs between privacy and utility in federated networks. Finally, this project will explore tensions between fairness (in terms of performance disparities across devices) and robustness (to data and model poisoning attacks) in federated learning. Although these goals may be at odds, this project aims to show that multi-task learning can inherently improve both fairness and robustness, helping both to be achieved jointly. Taken together, this work has the potential to cause a paradigm-shift in the way federated learning systems are designed, implemented, and analyzed.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
手机,可穿戴设备和智能家居仅形成了几个现代分布式网络,每天都会产生大量数据。由于边缘设备的计算能力不断增长,再加上对传输私有数据的担忧,因此在本地存储数据并将网络计算推向边缘越来越有吸引力。联合学习探索了分布式网络边缘的培训机学习模型。尽管联邦学习对实现边缘应用程序表现出了巨大的希望,但实际部署目前受到许多竞争性约束的困扰。除了准确之外,联邦学习方法还必须扩展到潜在的大量设备网络,并且必须表现出可信赖的行为 - - 解决与用户隐私,公平和鲁棒性等问题有关的实用问题。在这个项目中,我们探讨了多任务学习,该技术可以学习网络中每个设备的单独但相关模型,作为解决联合学习的竞争约束的统一方法。该项目的目的是开发适合实用联合网络的可扩展多任务学习方法,并以准确性,可伸缩性和可信赖性的目标来严格研究联邦多任务学习的基础性能。通过这样做,研究将解锁新一代的联合学习系统,这些系统可以整体解决现实的联邦网络的限制。该项目的目的是建立和严格地研究联邦多任务学习的使用。尽管联合多任务学习的准确性优势是众所周知的,但工作却显示了两个新的方向。首先,该项目开发了在大规模联邦网络中实现多任务学习的方法。其次,该项目表明,通过改善隐私,公平和鲁棒性,多任务学习实际上是值得信赖的联合学习的关键。项目工作的技术目标分为三个推力。首先,通过近似多任务学习的标准概念,该项目将开发并严格研究一个高度可扩展的联邦多任务学习目标的家庭。其次,将分析和评估多任务学习的隐私含义,以了解联合网络中隐私和公用事业之间的权衡。最后,该项目将探讨联邦学习中公平性(就设备之间的性能差异而言)与鲁棒性(数据和模型中毒攻击)之间的紧张关系。尽管这些目标可能是矛盾的,但该项目的目的是表明多任务学习可以固有地改善公平和稳健性,从而有助于共同实现。综上所述,这项工作有可能在设计,实施和分析联合学习系统的方式中引起范式偏移。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的评估来评估的审查标准。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Private Multi-Task Learning: Formulation and Applications to Federated Learning
- DOI:
- 发表时间:2021-08
- 期刊:
- 影响因子:0
- 作者:Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
- 通讯作者:Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
On Tilted Losses in Machine Learning: Theory and Applications
- DOI:
- 发表时间:2021-09
- 期刊:
- 影响因子:0
- 作者:Tian Li;Ahmad Beirami;Maziar Sanjabi;Virginia Smith
- 通讯作者:Tian Li;Ahmad Beirami;Maziar Sanjabi;Virginia Smith
On Privacy and Personalization in Cross-Silo Federated Learning
- DOI:10.48550/arxiv.2206.07902
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Ziyu Liu;Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
- 通讯作者:Ziyu Liu;Shengyuan Hu;Zhiwei Steven Wu;Virginia Smith
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Virginia Smith其他文献
Guardrail Baselines for Unlearning in LLMs
法学硕士遗忘的护栏基线
- DOI:
10.48550/arxiv.2403.03329 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Pratiksha Thaker;Yash Maurya;Virginia Smith - 通讯作者:
Virginia Smith
RL on Incorrect Synthetic Data Scales the Efficiency of LLM Math Reasoning by Eight-Fold
针对不正确合成数据的强化学习将 LLM 数学推理的效率提高了八倍
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Amrith Rajagopal Setlur;Saurabh Garg;Xinyang Geng;Naman Garg;Virginia Smith;Aviral Kumar - 通讯作者:
Aviral Kumar
Grass: Compute Efficient Low-Memory LLM Training with Structured Sparse Gradients
Grass:使用结构化稀疏梯度计算高效的低内存 LLM 训练
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Aashiq Muhamed;Oscar Li;David Woodruff;Mona Diab;Virginia Smith - 通讯作者:
Virginia Smith
Is Support Set Diversity Necessary for Meta-Learning?
支持集多样性对于元学习是必要的吗?
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Amrith Rajagopal Setlur;Oscar Li;Virginia Smith - 通讯作者:
Virginia Smith
Temporal Soil Dynamics in Bioinfiltration Systems
生物渗透系统中的时态土壤动力学
- DOI:
10.1061/(asce)ir.1943-4774.0001617 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Christine Smith;R. Connolly;R. Ampomah;Amanda Hess;K. Sample;Virginia Smith - 通讯作者:
Virginia Smith
Virginia Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Virginia Smith', 18)}}的其他基金
Equipment: MRI: Track 2 Acquisition of a Hydraulic and Sediment Recirculation Flume to Advance Fundamental Research in Urban Stormwater and Fluvial Processes
设备: MRI:轨道 2 获取水力和沉积物再循环水槽,以推进城市雨水和河流过程的基础研究
- 批准号:
2320356 - 财政年份:2023
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
Planning: SCC-PG: Smart, Sustainable, and Equitable Green Stormwater Systems in Urban Communities
规划:SCC-PG:城市社区智能、可持续和公平的绿色雨水系统
- 批准号:
2228035 - 财政年份:2022
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
CAS- Climate: CDS&E: Facilitating Sustainable and Fair Transformation of GSI through AI
CAS-气候:CDS
- 批准号:
2152834 - 财政年份:2022
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
Collaborative Research: An Inter-disciplinary Approach to Constraining Paleo-geomorphic Responses to the Eocene-Oligocene Hothouse to Icehouse Transition
合作研究:限制始新世-渐新世温室向冰室转变的古地貌响应的跨学科方法
- 批准号:
1844180 - 财政年份:2019
- 资助金额:
$ 59.72万 - 项目类别:
Standard Grant
相似国自然基金
血肿占位效应导致脑出血后神经功能障碍的环路基础及作用机制
- 批准号:12372303
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
硫化物阳极电解冶金新技术基础研究
- 批准号:52374308
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向底层视觉任务的通用自监督预训练基础模型研究
- 批准号:62371164
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
充填体微波养护增强机制及其原位应用基础理论研究
- 批准号:52374110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
醇类燃料分子结构对双燃料发动机碳烟生成和演变规律影响的基础研究
- 批准号:52306164
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Strengthening the Theoretical Foundations of Federated Learning: Utilizing Underlying Data Statistics in Mitigating Heterogeneity and Client Faults
职业:加强联邦学习的理论基础:利用底层数据统计来减轻异构性和客户端故障
- 批准号:
2340482 - 财政年份:2024
- 资助金额:
$ 59.72万 - 项目类别:
Continuing Grant
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 59.72万 - 项目类别:
CRITICAL: Collaborative Resource for Intensive care Translational science, Informatics, Comprehensive Analytics, and Learning
关键:重症监护转化科学、信息学、综合分析和学习的协作资源
- 批准号:
10461229 - 财政年份:2021
- 资助金额:
$ 59.72万 - 项目类别:
CRITICAL: Collaborative Resource for Intensive care Translational science, Informatics, Comprehensive Analytics, and Learning
关键:重症监护转化科学、信息学、综合分析和学习的协作资源
- 批准号:
10673051 - 财政年份:2021
- 资助金额:
$ 59.72万 - 项目类别:
myAURA: Personalized Web Service for Epilepsy Management
myAURA:用于癫痫管理的个性化 Web 服务
- 批准号:
10414826 - 财政年份:2021
- 资助金额:
$ 59.72万 - 项目类别: