Collaborative Research: High-Resolution Aerial Forest Mapping Infrastructure and Database to Support Forest and Disturbance Ecology Research

合作研究:支持森林和干扰生态学研究的高分辨率航空森林测绘基础设施和数据库

基本信息

  • 批准号:
    2152671
  • 负责人:
  • 金额:
    $ 80.48万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-09-01 至 2027-08-31
  • 项目状态:
    未结题

项目摘要

Forest inventories are critical resources for understanding biological patterns and processes, but they have traditionally required time-consuming ground-based surveys. Recent advances in small uncrewed aerial systems (sUAS, or “drones”) and artificial intelligence are enabling a new era of forest research in which individual trees can be mapped, measured, and identified to genus or species across broad areas without extensive ground surveys. Although the technology for low-cost drone-based forest mapping now exists, infrastructure to enable scientists to produce and access extensive forest maps is limiting. This project establishes and facilitates future expansion of a network of over 100 forest inventory plots of approximately 25 ha each. Fine-scale, broad-extent forest inventory data allows for new insight into the complex processes shaping forest communities and ecosystems. Understanding these dynamics is increasingly urgent as stressors such as droughts and high-severity wildfires drive dramatic shifts in forests–including conversion to non-forest vegetation–in the western U.S. and globally. Ecologists and forest managers require data on forest response to these novel conditions to develop management strategies, but the rate and magnitude of recent changes challenge traditional field-based data collection approaches. This project introduces drone-based forest mapping tools to the next generation of scientists via a Forest Ecology Drone Pilot Apprenticeship and via outreach events emphasizing underrepresented communities. It leverages existing investments in public cyberinfrastructure by NSF and trains scientists in its use for cloud-native research. It is demonstrating the relevance of the forest mapping infrastructure to forest management planning by mapping forests to support a multi-stakeholder forest restoration partnership. In recruiting staff and student participants, the project engages groups supporting underrepresented students and scholars, and the selection processes use holistic review and distance-traveled criteria.This project involves development of three complementary cyberinfrastructure innovations to support and extend the capacity of forest ecology and disturbance ecology research: (1) a scalable, reproducible, AI-enabled software workflow for processing imagery from low-cost drones into forest inventory data (e.g., maps of individual trees by size and genus or species); (2) a searchable, publicly accessible, extensible database of tree maps, initiated with 100, 25-ha maps aligned with forest inventory plot networks (including the NSF National Ecological Observatory Network, NEON) along important abiotic and disturbance history gradients; and (3) documentation and training, including virtual and in-person workshops, to enable researchers to produce and contribute their own data and analytical tools. The software workflow, which incorporates photogrammetry for 3D stand structure modeling and multi-view computer vision (via artificial neural networks) for taxonomic classification and rejection of false-positive tree detections, expands the forest survey extents achievable by scientists and resource managers by 100-fold. The project leverages CyVerse, one of NSF’s largest investments in research cyberinfrastructure, for data processing and data hosting. The resulting public forest inventory database supports cloud native research to improve models of forest pattern and process currently constrained by limited data. Open-source software development and project results are available at openforestobservatory.org.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Climate-Change-Driven Droughts and Tree Mortality: Assessing the Potential of UAV-Derived Early Warning Metrics
  • DOI:
    10.3390/rs15102627
  • 发表时间:
    2023-05-18
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Ewane, Ewane Basil;Mohan, Midhun;Cardil, Adrian
  • 通讯作者:
    Cardil, Adrian
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Derek Young其他文献

Proceedings of the Workshop on 3D Geometry Generation for Scientific Computing
科学计算 3D 几何生成研讨会论文集
  • DOI:
    10.1109/wacvw60836.2024.00088
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Marissa Ramirez de Chanlatte;Phillip Colella;Trevor Darrell;Alexandra Katherine Carlson;Peter H. N. de With;Huayu Deng;Shanyan Guan;James Hays;Tim Houben;Thomas Huisman;Nikita Jaipuria;Hans Johansen;Shuja Khalid;Akshay Krishnan;Chuming Li;M. Pisarenco;Amit Raj;Frank Rudzicz;Tim J. Schoonbeek;Sandhya Sridhar;Nathan Tseng;F. V. D. Sommen;Chen Wang;Yunbo Wang;Tong Wu;Xiaokang Yang;Jiawei Yao;Derek Young;Xianling Zhang
  • 通讯作者:
    Xianling Zhang
Classifying geospatial objects from multiview aerial imagery using semantic meshes
使用语义网格对多视图航空图像中的地理空间对象进行分类
  • DOI:
    10.48550/arxiv.2405.09544
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    David Russell;Ben Weinstein;David Wettergreen;Derek Young
  • 通讯作者:
    Derek Young
A framework for incorporating insurance in critical infrastructure cyber risk strategies
将保险纳入关键基础设施网络风险策略的框架
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Derek Young;Juan Lopez;Mason Rice;Benjamin W. P. Ramsey;R. McTasney
  • 通讯作者:
    R. McTasney

Derek Young的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325311
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335568
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Planning: FIRE-PLAN:High-Spatiotemporal-Resolution Sensing and Digital Twin to Advance Wildland Fire Science
合作研究:规划:FIRE-PLAN:高时空分辨率传感和数字孪生,以推进荒地火灾科学
  • 批准号:
    2335569
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Connecting the Past, Present, and Future Climate of the Lake Victoria Basin using High-Resolution Coupled Modeling
合作研究:使用高分辨率耦合建模连接维多利亚湖盆地的过去、现在和未来气候
  • 批准号:
    2323649
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
Collaborative Research: Constraining next generation Cascadia earthquake and tsunami hazard scenarios through integration of high-resolution field data and geophysical models
合作研究:通过集成高分辨率现场数据和地球物理模型来限制下一代卡斯卡迪亚地震和海啸灾害情景
  • 批准号:
    2325312
  • 财政年份:
    2024
  • 资助金额:
    $ 80.48万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了