Collaborative Research: CCRI: ENS: Boa 2.0: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale
合作研究:CCRI:ENS:Boa 2.0:增强大规模研究软件及其演化的基础设施
基本信息
- 批准号:2120386
- 负责人:
- 金额:$ 44.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In today’s software-centric world, ultra-large-scale software repositories, e.g. GitHub, with hundreds of thousands of projects each, are the new library of Alexandria. They contain an enormous corpus of software and information about software. Scientists and engineers alike are interested in analyzing this wealth of information both for curiosity as well as for testing important research hypotheses. However, the current barrier to entry is prohibitive and only a few with well-established infrastructure and deep expertise can attempt such ultra-large-scale analysis. Necessary expertise includes: programmatically accessing version control systems, data storage and retrieval, data mining, and parallelization. The need to have expertise in these four different areas significantly increases the cost of scientific research that attempts to answer research questions involving ultra-large-scale software repositories. As a result, experiments are often not replicable, and reusability of experimental infrastructure low. Furthermore, data associated and produced by such experiments is often lost and becomes inaccessible and obsolete, because there is no systematic curation. Last but not least, building analysis infrastructure to process ultra-large-scale data efficiently can be very hard. This project will continue to enhance the CISE research infrastructure called Boa to aid and assist with such research. This next version of Boa will be called Boa 2.0 and it will continue to be globally disseminated. The project will further develop the programming language also called Boa, that can hide the details of programmatically accessing version control systems, data storage and retrieval, data mining, and parallelization from the scientists and engineers and allow them to focus on the program logic. The project will also enhance the data mining infrastructure for Boa, and a BIGDATA repository containing millions of open source project for analyzing ultra-large-scale software repositories to help with such experiments. The project will integrate Boa 2.0 with the Center for Open Science Open Science Framework (OSF) to improve reproducibility and with the national computing resource XSEDE to improve scalability. The broader impacts of Boa 2.0 stem from its potential to enable developers, designers and researchers to build intuitive, multi-modal, user-centric, scientific applications that can aid and enable scientific research on individual, social, legal, policy, and technical aspects of open source software development. This advance will primarily be achieved by significantly lowering the barrier to entry and thus enabling a larger and more ambitious line of data-intensive scientific discovery in this area.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在当今以软件为中心的世界中,超大规模的软件存储库(例如 GitHub)是亚历山大的新图书馆,它们包含大量的软件和有关软件的信息。有兴趣分析这些丰富的信息,既是出于好奇,也是为了测试重要的研究假设。然而,目前的进入壁垒令人望而却步,只有少数拥有完善基础设施和深厚专业知识的人才能尝试如此大规模的研究。必要的专业知识包括:以编程方式访问版本控制系统、数据存储和检索、数据挖掘以及并行化。对这四个不同领域的专业知识的需求显着增加了试图回答涉及超大规模的研究问题的科学研究的成本。因此,实验通常不可复制,实验基础设施的可重用性也很低,而且,由于没有系统性的管理,此类实验产生的数据常常会丢失、无法访问和过时。但并非最不重要的是,构建有效处理超大规模数据的分析基础设施可能非常困难,该项目将继续增强名为 Boa 的 CISE 研究基础设施,以帮助和协助此类研究。Boa 的下一个版本将称为 Boa。 2.0 并将继续在全球范围内进一步传播,该项目将开发也称为 Boa 的编程语言,该语言可以向科学家和工程师隐藏以编程方式访问版本控制系统、数据存储和检索、数据挖掘以及并行化的细节。该项目还将增强 Boa 的数据挖掘基础设施,以及包含数百万个开源项目的 BIGDATA 存储库,用于分析超大规模软件存储库,以帮助进行此类实验。 Boa 2.0 与开放科学中心开放科学框架 (OSF) 一起提高可重复性,并与国家计算资源 XSEDE 一起提高可扩展性 Boa 2.0 的更广泛影响源于其为开发人员、设计人员提供支持的潜力。和研究人员构建直观、多模式、以用户为中心的科学应用程序,这些应用程序可以帮助和支持开源软件开发的个人、社会、法律、政策和技术方面的科学研究。这一进步主要是通过显着降低成本来实现的。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DeepVD: Toward Class-Separation Features for Neural Network Vulnerability Detection
DeepVD:面向神经网络漏洞检测的类分离特征
- DOI:10.1109/icse48619.2023.00189
- 发表时间:2023-05-01
- 期刊:
- 影响因子:0
- 作者:Wenbo Wang;Tien N. Nguyen;Shaohua Wang;Yi Li;Jiyuan Zhang;Aashish Yadavally
- 通讯作者:Aashish Yadavally
(Partial) Program Dependence Learning
(部分)程序依赖学习
- DOI:10.1109/icse48619.2023.00209
- 发表时间:2023-05-01
- 期刊:
- 影响因子:0
- 作者:Aashish Yadavally;T. Nguyen;Wenbo Wang;Shaohua Wang
- 通讯作者:Shaohua Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tien Nguyen其他文献
Investigation of Vertical Pullout Cyclic Response of Bucket Foundations in Saturated Loose Sand
饱和松砂中桶形基础竖向拉拔循环响应研究
- DOI:
10.1007/978-981-13-2306-5_53 - 发表时间:
2018-09-25 - 期刊:
- 影响因子:0
- 作者:
Le Chi Hung;Si;Sung;Xuan Nghiem Tran;Tien Nguyen;Ju - 通讯作者:
Ju
Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder
无水泥SFC粘结剂高强自密实混凝土的工程性能及耐久性
- DOI:
10.1016/j.conbuildmat.2015.12.163 - 发表时间:
2016-03-01 - 期刊:
- 影响因子:7.4
- 作者:
Hoang;Ta;Jeng;Chun;Tien Nguyen - 通讯作者:
Tien Nguyen
Proposing a Graphic Simulator for an Upper Limb Exoskeleton Robot
为上肢外骨骼机器人提出图形模拟器
- DOI:
10.1155/2023/2844202 - 发表时间:
2023-05-06 - 期刊:
- 影响因子:2.2
- 作者:
Thanh;Tien Nguyen;Ha Pham;Tam Bui - 通讯作者:
Tam Bui
A study on skeleton-based action recognition and its application to physical exercise recognition
基于骨骼的动作识别及其在体育运动识别中的应用研究
- DOI:
10.1145/3568562.3568639 - 发表时间:
2022-12-01 - 期刊:
- 影响因子:0
- 作者:
Quang Pham;Duc;Tien Nguyen;Thanh Nam Nguyen;Duy;Dinh;Thanh;Thi;Hai Vu - 通讯作者:
Hai Vu
A Hybrid Bayesian Network Modeling Environment
混合贝叶斯网络建模环境
- DOI:
- 发表时间:
1999-09-14 - 期刊:
- 影响因子:0
- 作者:
Thu T. H. Doan;P. Haddawy;Tien Nguyen - 通讯作者:
Tien Nguyen
Tien Nguyen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tien Nguyen', 18)}}的其他基金
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
- 批准号:
1723215 - 财政年份:2016
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
TWC: Small: Detection and Prevention of Prior Known Software Security Vulnerabilities
TWC:小:检测和预防先前已知的软件安全漏洞
- 批准号:
1723198 - 财政年份:2016
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
SHF:Small: Build Code Maintenance and Detecting, Testing, Locating Configuration and Build Errors
SHF:Small:构建代码维护以及检测、测试、定位配置和构建错误
- 批准号:
1723432 - 财政年份:2016
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
- 批准号:
1413927 - 财政年份:2014
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant
SHF:Small: Build Code Maintenance and Detecting, Testing, Locating Configuration and Build Errors
SHF:Small:构建代码维护以及检测、测试、定位配置和构建错误
- 批准号:
1320578 - 财政年份:2013
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
TWC: Small: Detection and Prevention of Prior Known Software Security Vulnerabilities
TWC:小:检测和预防先前已知的软件安全漏洞
- 批准号:
1223828 - 财政年份:2012
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
SHF: Small: Find and Fix Similar Software Bugs
SHF:小型:查找并修复类似的软件错误
- 批准号:
1018600 - 财政年份:2010
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Improving Embedded System Education with Software Engineering Methodologies
利用软件工程方法改进嵌入式系统教育
- 批准号:
0737029 - 财政年份:2008
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CCRI: New: A Research News Recommender Infrastructure with Live Users for Algorithm and Interface Experimentation
合作研究:CCRI:新:研究新闻推荐基础设施与实时用户进行算法和界面实验
- 批准号:
2232552 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Planning-C: Enabling Computer Architecture Simulation as a Service
合作研究:CCRI:Planning-C:实现计算机架构仿真即服务
- 批准号:
2234401 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Planning-C: A Community for Configurability Open Research and Development (ACCORD)
合作研究:CCRI:Planning-C:可配置性开放研究与开发社区 (ACCORD)
- 批准号:
2234909 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Collaborative Research: Research Infrastructure: CCRI:New: Data-Driven Cybersecurity Research Infrastructure for Smart Manufacturing
合作研究:研究基础设施:CCRI:新:数据驱动的智能制造网络安全研究基础设施
- 批准号:
2234973 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Standard Grant
Collaborative Research: CCRI: Grand: Quori 2.0: Uniting, Broadening, and Sustaining a Research Community Around a Modular Social Robot Platform
协作研究:CCRI:盛大:Quori 2.0:围绕模块化社交机器人平台联合、扩大和维持研究社区
- 批准号:
2235042 - 财政年份:2023
- 资助金额:
$ 44.82万 - 项目类别:
Continuing Grant