SHF: Large: Collaborative Research: Exploiting the Naturalness of Software

SHF:大型:协作研究:利用软件的自然性

基本信息

  • 批准号:
    1723215
  • 负责人:
  • 金额:
    $ 26.07万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2016
  • 资助国家:
    美国
  • 起止时间:
    2016-07-01 至 2022-06-30
  • 项目状态:
    已结题

项目摘要

This inter-disciplinary project has its roots in Natural Language (NL) processing. Languages such as English allow intricate, lovely and complex constructions; yet, everyday, ``natural? speech and writing is simple, prosaic, and repetitive, and thus amenable to statistical modeling. Once large NL corpora became available, computational muscle and algorithmic insight led to rapid advances in the statistical modeling of natural utterances, and revolutionized tasks such as translation, speech recognition, text summarization, etc. While programming languages, like NL, are flexible and powerful, in theory allowing a great variety of complex programs to be written, we find that ``natural? programs that people actually write are regular, repetitive and predictable. This project will use statistical models to capture and exploit this regularity to create a new generation of software engineering tools to achieve transformative improvements in software quality and productivity. The project will exploit language modeling techniques to capture the regularity in natural programs at the lexical, syntactic, and semantic levels. Statistical modeling will also be used to capture alignment regularities in ``bilingual? corpora such as code with comments, or explanatory text (e.g., Stackoverflow) and in systems developed on two platforms such as Java and C#. These statistical models will help drive novel, data-driven approaches for applications such as code suggestion and completion, and assistive devices for programmers with movement or visual challenges. These models will also be exploited to correct simple errors in programs. Models of bilingual data will used to build code summarization and code retrieval tools, as well as tools for porting across platforms. Finally, this project will create a large, curated corpus of software, and code analysis products, as well as a corpus of alignments within software bilingual corpora, to help create and nurture a research community in this area.
这个跨学科项目植根于自然语言(NL)处理。像英语这样的语言允许复杂、可爱和复杂的结构;然而,每天,“自然?”演讲和写作简单、平淡且重复,因此适合统计建模。一旦大型 NL 语料库可用,计算能力和算法洞察力就会导致自然话语统计建模的快速进步,并彻底改变翻译、语音识别、文本摘要等任务。而像 NL 这样的编程语言则灵活且强大,理论上允许编写各种各样的复杂程序,我们发现“自然”?人们实际编写的程序是有规律的、重复的和可预测的。该项目将使用统计模型来捕获和利用这种规律性,以创建新一代软件工程工具,以实现软件质量和生产力的变革性改进。 该项目将利用语言建模技术来捕获自然程序在词汇、句法和语义层面的规律性。统计模型还将用于捕获“双语”中的对齐规律。语料库,例如带有注释的代码或解释性文本(例如 Stackoverflow)以及在 Java 和 C# 等两个平台上开发的系统。 这些统计模型将有助于推动新颖的、数据驱动的应用方法,例如代码建议和完成,以及为有运动或视觉障碍的程序员提供辅助设备。这些模型还将用于纠正程序中的简单错误。双语数据模型将用于构建代码摘要和代码检索工具,以及跨平台移植工具。最后,该项目将创建一个大型的、精选的软件和代码分析产品语料库,以及软件双语语料库中的对齐语料库,以帮助创建和培育该领域的研究社区。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tien Nguyen其他文献

Proposing a Graphic Simulator for an Upper Limb Exoskeleton Robot
为上肢外骨骼机器人提出图形模拟器
  • DOI:
    10.1155/2023/2844202
  • 发表时间:
    2023-05-06
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Thanh;Tien Nguyen;Ha Pham;Tam Bui
  • 通讯作者:
    Tam Bui
Engineering properties and durability of high-strength self-compacting concrete with no-cement SFC binder
无水泥SFC粘结剂高强自密实混凝土的工程性能及耐久性
  • DOI:
    10.1016/j.conbuildmat.2015.12.163
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    7.4
  • 作者:
    Hoang;Ta;Jeng;Chun;Tien Nguyen
  • 通讯作者:
    Tien Nguyen
Investigation of Vertical Pullout Cyclic Response of Bucket Foundations in Saturated Loose Sand
饱和松砂中桶形基础竖向拉拔循环响应研究
  • DOI:
    10.1007/978-981-13-2306-5_53
  • 发表时间:
    2018-09-25
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Le Chi Hung;Si;Sung;Xuan Nghiem Tran;Tien Nguyen;Ju
  • 通讯作者:
    Ju
A Hybrid Bayesian Network Modeling Environment
混合贝叶斯网络建模环境
  • DOI:
  • 发表时间:
    1999-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Thu T. H. Doan;P. Haddawy;Tien Nguyen
  • 通讯作者:
    Tien Nguyen
A study on skeleton-based action recognition and its application to physical exercise recognition
基于骨骼的动作识别及其在体育运动识别中的应用研究

Tien Nguyen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tien Nguyen', 18)}}的其他基金

Collaborative Research: CCRI: ENS: Boa 2.0: Enhancing Infrastructure for Studying Software and its Evolution at a Large Scale
合作研究:CCRI:ENS:Boa 2.0:增强大规模研究软件及其演化的基础设施
  • 批准号:
    2120386
  • 财政年份:
    2021
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
TWC: Small: Detection and Prevention of Prior Known Software Security Vulnerabilities
TWC:小:检测和预防先前已知的软件安全漏洞
  • 批准号:
    1723198
  • 财政年份:
    2016
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
SHF:Small: Build Code Maintenance and Detecting, Testing, Locating Configuration and Build Errors
SHF:Small:构建代码维护以及检测、测试、定位配置和构建错误
  • 批准号:
    1723432
  • 财政年份:
    2016
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Exploiting the Naturalness of Software
SHF:大型:协作研究:利用软件的自然性
  • 批准号:
    1413927
  • 财政年份:
    2014
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
SHF:Small: Build Code Maintenance and Detecting, Testing, Locating Configuration and Build Errors
SHF:Small:构建代码维护以及检测、测试、定位配置和构建错误
  • 批准号:
    1320578
  • 财政年份:
    2013
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
TWC: Small: Detection and Prevention of Prior Known Software Security Vulnerabilities
TWC:小:检测和预防先前已知的软件安全漏洞
  • 批准号:
    1223828
  • 财政年份:
    2012
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
SHF: Small: Find and Fix Similar Software Bugs
SHF:小型:查找并修复类似的软件错误
  • 批准号:
    1018600
  • 财政年份:
    2010
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Improving Embedded System Education with Software Engineering Methodologies
利用软件工程方法改进嵌入式系统教育
  • 批准号:
    0737029
  • 财政年份:
    2008
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant

相似国自然基金

深海大尺度异种钛合金环肋柱壳的失效破坏机理及安全性评估方法研究
  • 批准号:
    52371282
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
  • 批准号:
    42302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于端到端协同设计的宽光谱大视场编码掩膜成像方法研究
  • 批准号:
    62305183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大尺寸砷化硼电声输运的缺陷调制机理研究
  • 批准号:
    62304031
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于大环AIE配体的币金属簇基MOFs的构筑及分子识别研究
  • 批准号:
    22301283
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Standard Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
SHF: Large: Collaborative Research: Molecular computing for the real world
SHF:大型:协作研究:现实世界的分子计算
  • 批准号:
    1832985
  • 财政年份:
    2018
  • 资助金额:
    $ 26.07万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了