EAGER: Hyperdimensional computing with geometric algebra
EAGER:几何代数的超维计算
基本信息
- 批准号:2147640
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In the modern era of big data, a crucial challenge is to discover useful information that is buried in highly redundant, seemingly irrelevant, incomplete, or even corrupted data sets. Such information is often contained in certain low-dimensional structures hidden within the high-dimensional space of the data, or may only depend on a small subset of the data. How to extract this information efficiently and automatically remains an open problem. This project brings together two emerging areas of research — hyperdimensional (HD) computing and geometric algebra (GA) — to tackle this problem from a new stand point by investigating the data representation and the intrinsic geometry of the data. This research is also the first in a systematic quest to uncover the potential of using the high-dimensional generalization of complex numbers in analyzing and discovering patterns in large-scale sensing data. The success of this research can help advance the capability of other machine learning models, such as deep neural networks, which are mostly based on real numbers today. It also brings a powerful mathematical tool (GA) which is mainly known in the physics community into the machine learning community.HD computing is a brain-inspired framework for machine learning and artificial intelligence that is based on representing quantities or symbols as high-dimensional vectors and manipulating vectors with simple operations. In recent work by the investigators, it was shown that by using complex-valued vectors in HD computing it is possible to encode images in such a way that patterns can be effectively recognized by a factorization of HD vectors. To build on this direction, they are exploring the use of geometric algebras which generalize complex numbers to any n-dimensional space. The following thrusts form the core of this research: (1) explore ways of mapping data into the geometric algebra space; (2) investigate how to integrate geometric algebra with the operations of HD computing; (3) apply these methods to real application domains such as multi-microphone speech recognition or distributed sensing to evaluate their efficacy and computational efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在大数据的现代时代,一个至关重要的挑战是发现有用的信息,这些信息掩埋在高度冗余的E,甚至是损坏的数据集中。数据,或可能仅取决于一小部分数据。代表和数据的固有几何形状。 s,例如当今主要基于实际数字的深神经网络智力代表数量或符号作为简单的高度矢量和操纵器。通过识别HD矢量的分解。高清计算; TED感知他们的评估和计算。该奖项反映了NSF'SF'Stutrory Mission,并通过评估Usindation的智力优点和更广泛的影响来审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bruno Olshausen其他文献
Bruno Olshausen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bruno Olshausen', 18)}}的其他基金
Collaborative Research: RI: Medium: Lie group representation learning for vision
协作研究:RI:中:视觉的李群表示学习
- 批准号:
2313149 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
RI: Large: Collaborative Research: 3D Structure and Motion in Dynamic Natural Scenes
RI:大型:协作研究:动态自然场景中的 3D 结构和运动
- 批准号:
1111765 - 财政年份:2011
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
RI: Collaborative Research: Hierarchical Models of Time-Varying Natural Images
RI:协作研究:时变自然图像的层次模型
- 批准号:
0705939 - 财政年份:2007
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
SGER Collaborative Research: Hierarchical Models of Time-Varying Natural Images
SGER 合作研究:时变自然图像的层次模型
- 批准号:
0625717 - 财政年份:2006
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
基于超表面的光波多参量联合调控机制及多维度平面光学成像术研究
- 批准号:12374278
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
空间调制力学超材料的合成维度设计与拓扑弹性波调控
- 批准号:12302113
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
钙钛矿和超构表面融合的超快多维度太赫兹调控机理研究
- 批准号:62301509
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于合成维度的拓扑超晶格的设计与非线性光学效应的研究
- 批准号:12334015
- 批准年份:2023
- 资助金额:239 万元
- 项目类别:重点项目
基于多维度超浸润滤材的油水分离元件与其内部液体流动特性研究
- 批准号:52365007
- 批准年份:2023
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326597 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices
协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击
- 批准号:
2326598 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003279 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
- 批准号:
2003277 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
FET: Small: Brain-Inspired Hyperdimensional Computing for IoT Applications
FET:小型:用于物联网应用的类脑超维计算
- 批准号:
1911095 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant