Collaborative Research: MLWiNS: Hyperdimensional Computing for Scalable IoT Intelligence Beyond the Edge
协作研究:MLWiNS:用于超越边缘的可扩展物联网智能的超维计算
基本信息
- 批准号:2003277
- 负责人:
- 金额:$ 6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Internet of Things (IoT) generates large amounts of data that machine learning algorithms today process in the cloud. The heterogeneity of the data types and devices, along with limited computing and communication capabilities of IoT devices, poses a significant challenge to real-time training and learning with classical machine learning algorithms. This project instead proposes to use Hyperdimensional (HD) computing for distributed machine learning. HD computing is a brain-inspired machine learning paradigm that transforms data into knowledge at very low cost, while being extremely robust to errors. When completed, this project has the potential to change the way machine learning is done today – instead of depending on the cloud, IoT systems will be able to make quality decisions on the spot, in real time, regardless of connectivity, with long battery lifetime. This will be made possible by designing: i) novel HD encoding schemes to represent various data in IoT applications including numerical feature vectors, time-series data, and images, ii) a novel distributed learning framework for IoT networks by incorporating active learning to considerably reduce communication overhead and learning costs, and iii) a reliable learning solution based on the error-tolerant characteristic of HD computing. The ideas developed in this project will be tested on both UCSD and SDSU using a fully instrumented testbed for human activity recognition.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网(IoT)生成了大量的数据,这些数据是在PES和设备中进行的,以及IoT设备的计算和通信能力能力有限经典的机器学习算法。 ,无论连接如何,都可以通过设计来实时。积极的学习以减少高清计算的沟通开销和学习成本。值得使用基金会的UAL功绩和更广泛影响的评论标准来支持Thalugh评估。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Multi-label HD Classification in 3D Flash
- DOI:10.1109/vlsi-soc46417.2020.9344070
- 发表时间:2020-10
- 期刊:
- 影响因子:0
- 作者:Justin Morris;Yilun Hao;Saransh Gupta;R. Ramkumar;Jeffrey Yu;M. Imani;Baris Aksanli;Tajana Simunic
- 通讯作者:Justin Morris;Yilun Hao;Saransh Gupta;R. Ramkumar;Jeffrey Yu;M. Imani;Baris Aksanli;Tajana Simunic
HD2FPGA: Automated Framework for Accelerating Hyperdimensional Computing on FPGAs
HD2FPGA:加速 FPGA 上超维计算的自动化框架
- DOI:10.1109/isqed57927.2023.10129332
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Zhang, Tinaqi;Salamat, Sahand;Khaleghi, Behnam;Morris, Justin;Aksanli, Baris;Rosing, Tajana Simunic
- 通讯作者:Rosing, Tajana Simunic
AdaptBit-HD: Adaptive Model Bitwidth for Hyperdimensional Computing
AdaptBit-HD:超维计算的自适应模型位宽
- DOI:10.1109/iccd53106.2021.00026
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Morris, J.
- 通讯作者:Morris, J.
HyDREA: Towards More Robust and Efficient Machine Learning Systems with Hyperdimensional Computing
HyDREA:通过超维计算实现更强大、更高效的机器学习系统
- DOI:10.23919/date51398.2021.9474218
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Morris, J.
- 通讯作者:Morris, J.
Adversarial-HD: Hyperdimensional Computing Adversarial Attack Design for Secure Industrial Internet of Things
- DOI:10.1145/3576914.3587484
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Onat Gungor;T. Rosing;Baris Aksanli
- 通讯作者:Onat Gungor;T. Rosing;Baris Aksanli
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Baris Aksanli其他文献
Validation of Frequency Warping (Freping) as a new tool for feedback control in hearing aids
频率扭曲 (Freping) 作为助听器反馈控制新工具的验证
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alice Sokolova;Varsha Rallapalli;Anusha Yellamsetty;Martin Hunt;Baris Aksanli;F. Harris;H. Garudadri - 通讯作者:
H. Garudadri
Consolidating Compression and Revisiting Expansion: an Alternative Amplification Rule for Wide Dynamic Range Compression
巩固压缩并重新审视扩展:宽动态范围压缩的替代放大规则
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Alice Sokolova;Baris Aksanli;F. Harris;H. Garudadri - 通讯作者:
H. Garudadri
PIONEER: Highly Efficient and Accurate Hyperdimensional Computing using Learned Projection
PIONEER:使用学习投影进行高效、准确的超维计算
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Fatemeh Asgarinejad;Justin Morris;T. Rosing;Baris Aksanli - 通讯作者:
Baris Aksanli
Building an Intelligent and Efficient Smart Space to Detect Human Behavior in Common Areas
构建智能高效的智慧空间,检测公共区域的人类行为
- DOI:
10.1109/isncc.2018.8530988 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
S. Shelke;Jacob Harbour;Baris Aksanli - 通讯作者:
Baris Aksanli
Context-aware and user-centric residential energy management
环境感知和以用户为中心的住宅能源管理
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
Baris Aksanli;J. Venkatesh;Christine S. Chan;A. S. Akyurek;Tajana Simunic - 通讯作者:
Tajana Simunic
Baris Aksanli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Baris Aksanli', 18)}}的其他基金
NRI: FND: COLLAB: Distributed Bayesian Learning and Safe Control for Autonomous Wildfire Detection
NRI:FND:COLLAB:用于自主野火检测的分布式贝叶斯学习和安全控制
- 批准号:
1830331 - 财政年份:2018
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: MLWiNS:Physical Layer Communication revisited via Deep Learning
合作研究:MLWiNS:通过深度学习重新审视物理层通信
- 批准号:
2240916 - 财政年份:2022
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2203412 - 财政年份:2021
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002821 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: A Coding-Centric Approach to Robust, Secure, and Private Distributed Learning over Wireless
协作研究:MLWiNS:一种以编码为中心的方法,通过无线实现稳健、安全和私密的分布式学习
- 批准号:
2002874 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant
Collaborative Research: MLWiNS: Distributed Learning over Multi-Access Channels: From Bandlimited Coordinate Descent to Gradient Sketching
协作研究:MLWiNS:多访问通道上的分布式学习:从带限坐标下降到梯度草图
- 批准号:
2003081 - 财政年份:2020
- 资助金额:
$ 6万 - 项目类别:
Standard Grant