Collaborative Research: SaTC: CORE: Small: Securing Brain-inspired Hyperdimensional Computing against Design-time and Run-time Attacks for Edge Devices

协作研究:SaTC:核心:小型:保护类脑超维计算免受边缘设备的设计时和运行时攻击

基本信息

  • 批准号:
    2326597
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-10-01 至 2026-09-30
  • 项目状态:
    未结题

项目摘要

Many computing applications depend on machine learning (ML) algorithms that analyze patterns in data and make predictions about new data they encounter. Many recent advances in these machine learning classifiers use approaches based on neural networks; however, neural networks often require large amounts of data, memory, and processing power. Brain-inspired hyperdimensional computing (HDC) has emerged in recent years as a less resource-heavy approach to building classifiers that are well-suited for smaller computing devices that have less computing power. However, just like other ML classifier architectures, HDC models may be threatened by attackers who want to degrade the models' performance, insert backdoor "triggers" that let attackers take control of devices by presenting secret inputs, or steal the models themselves. However, these security risks in HDC models are not as well-studied as HDC performance. This project's goal is to close that gap through a better understanding of HDC security vulnerabilities and defenses. This includes analyzing the space of possible attacks on HDC models, drawing parallels between attacks and defenses in neural networks and those in HDC models, and developing defenses that are as effective, efficient, and lightweight as the HDC models themselves so they can too be deployed in devices with limited computing power.This project paves the way for HDC-based inference on edge devices by systematically investigating the attack surface for HDC computing, from design time to run time and from algorithm to hardware. First, it explores the vulnerabilities associated with HDC and systematically defines its unique attack surface. Accordingly, it investigates critical threats against HDC model performance and privacy from adversarial input, model perturbation, and reverse engineering. Second, it explores effective and efficient defense strategies by incorporating algorithmic-, hardware-, and system-level methods. A key insight and tool in the proposed work are methods for relating neural network-based models and HDC models; this will allow for comparative studies as well as open possibilities for adapting existing attacks and defenses on neural network-based architectures to HDC contexts. The scientific outcomes will help reshape HDC-enabled computing systems toward greater security and robustness. The project also contains a significant educational component and provides abundant opportunities to nurture and attract students from under-represented groups to engage in computer science and computer science research.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
许多计算应用程序依赖于机器学习 (ML) 算法来分析数据模式并对遇到的新数据进行预测。这些机器学习分类器的许多最新进展都使用基于神经网络的方法;然而,神经网络通常需要大量数据、内存和处理能力。近年来,受类脑启发的超维计算(HDC)作为一种资源消耗较少的方法来构建分类器,非常适合计算能力较低的小型计算设备。然而,就像其他 ML 分类器架构一样,HDC 模型可能会受到攻击者的威胁,他们想要降低模型的性能、插入后门“触发器”,让攻击者通过提供秘密输入来控制设备,或者窃取模型本身。然而,HDC 模型中的这些安全风险并未像 HDC 性能那样得到充分研究。该项目的目标是通过更好地了解 HDC 安全漏洞和防御来缩小这一差距。这包括分析 HDC 模型可能受到攻击的空间,将神经网络中的攻击和防御与 HDC 模型中的攻击和防御进行比较,以及开发与 HDC 模型本身一样有效、高效和轻量级的防御,以便它们也可以部署该项目通过系统地研究 HDC 计算的攻击面(从设计时到运行时、从算法到硬件),为边缘设备上基于 HDC 的推理铺平了道路。首先,它探讨了与 HDC 相关的漏洞,并系统地定义了其独特的攻击面。因此,它调查了来自对抗性输入、模型扰动和逆向工程对 HDC 模型性能和隐私的关键威胁。其次,结合算法、硬件、系统层面的方法,探索有效、高效的防御策略。拟议工作中的一个关键见解和工具是将基于神经网络的模型和 HDC 模型相关联的方法;这将允许进行比较研究,并为将基于神经网络的架构的现有攻击和防御适应 HDC 环境提供开放的可能性。这些科学成果将有助于重塑支持 HDC 的计算系统,以实现更高的安全性和鲁棒性。该项目还包含重要的教育内容,并提供丰富的机会来培养和吸引弱势群体的学生从事计算机科学和计算机科学研究。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持。智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
MirrorNet: A TEE-Friendly Framework for Secure On-Device DNN Inference
AQ2PNN: Enabling Two-party Privacy-Preserving Deep Neural Network Inference with Adaptive Quantization
  • DOI:
    10.1145/3613424.3614297
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yukui Luo;Nuo Xu;Hongwu Peng;Chenghong Wang;Shijin Duan;Kaleel Mahmood;Wujie Wen;Caiwen Ding;Xiaolin Xu
  • 通讯作者:
    Yukui Luo;Nuo Xu;Hongwu Peng;Chenghong Wang;Shijin Duan;Kaleel Mahmood;Wujie Wen;Caiwen Ding;Xiaolin Xu
Achieving Certified Robustness for Brain-Inspired Low-Dimensional Computing Classifiers
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xiaolin Xu其他文献

The Role of Community-Based Rehabilitation and Community-Based Inclusive Development in Facilitating Access to Justice for Persons with Disabilities Globally
社区康复和社区包容性发展在促进全球残疾人诉诸司法方面的作用
  • DOI:
    10.13169/intljofdissocjus.3.3.0004
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Heather Michelle Aldersey;Xiaolin Xu;Venkatesh Balakrishna;Maholo Carolyne Sserunkuma;Alaa Sebeh;Zambrano Olmedo;Reshma Parvin Nuri;Ansha Nega Ahmed
  • 通讯作者:
    Ansha Nega Ahmed
Research on a Lightweight Method for Maize Seed Quality Detection Based on Improved YOLOv8
基于改进YOLOv8的轻量级玉米种子质量检测方法研究
  • DOI:
    10.1109/access.2024.3365559
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Siqi Niu;Xiaolin Xu;Ao Liang;Yuliang Yun;Li Li;Fengqi Hao;Jinqiang Bai;Dexin Ma
  • 通讯作者:
    Dexin Ma
Thermodynamic Modelling of Buried Transformer Substations for Dynamic Loading Capability Assessment Considering Underground Heat Accumulative Effect
考虑地下蓄热效应的地埋变电站动载能力评估热力学模型
URMG: Enhanced CBMG-Based Method for Automatically Testing Web Applications in the Cloud
URMG:基于 CBMG 的增强型云中 Web 应用程序自动测试方法
  • DOI:
    10.1109/tst.2014.6733209
  • 发表时间:
    2014-02
  • 期刊:
  • 影响因子:
    6.6
  • 作者:
    Xiaolin Xu;Hai Jin;Song Wu;Lixiang Tang;Yihong Wang
  • 通讯作者:
    Yihong Wang
The Effect of Aromatase on the Reproductive Function of Obese
芳香酶对肥胖者生殖功能的影响
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xiaolin Xu;Mingqi Sun;Jifeng Ye;D;an Luo;Xiaohui Su;Dongmei Zheng;Li Feng;Ling Gao;Chunxiao Yu;Qingbo Guan
  • 通讯作者:
    Qingbo Guan

Xiaolin Xu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xiaolin Xu', 18)}}的其他基金

Travel: NSF Student Travel Grant for 2023 New England Hardware Security Day (NEHWS2023)
旅行:2023 年新英格兰硬件安全日 NSF 学生旅行补助金 (NEHWS2023)
  • 批准号:
    2315830
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CICI:TCR:CAREFREE:Cloud infrAstructure ResiliencE of the Future foR tEstbeds, accelerators and nEtworks
CICI:TCR:CAREFREE:未来测试床、加速器和网络的云基础设施弹性
  • 批准号:
    2319962
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Medium: Accelerating Privacy-Preserving Machine Learning as a Service: From Algorithm to Hardware
协作研究:SaTC:核心:中:加速保护隐私的机器学习即服务:从算法到硬件
  • 批准号:
    2247892
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
CAREER: Securing Reconfigurable Hardware Accelerator for Machine Learning: Threats and Defenses
职业:保护用于机器学习的可重新配置硬件加速器:威胁与防御
  • 批准号:
    2239672
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Small: Secure and Robust Machine Learning in Multi-Tenant Cloud FPGA
协作研究:SaTC:CORE:小型:多租户云 FPGA 中安全且稳健的机器学习
  • 批准号:
    2153690
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    1955337
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
SaTC: EDU: Collaborative: Bolstering UAV Cybersecurity Education through Curriculum Development with Hands-on Laboratory Framework
SaTC:EDU:协作:通过实践实验室框架的课程开发来加强无人机网络安全教育
  • 批准号:
    2043183
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了