I-Corps: Software platform for predicting hospital patient re-admissions

I-Corps:用于预测医院患者重新入院的软件平台

基本信息

  • 批准号:
    2147482
  • 负责人:
  • 金额:
    $ 5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2022-05-31
  • 项目状态:
    已结题

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of predictive modeling tools to help reduce preventable hospital readmissions. One in every eight patients discharged from acute care hospitals is readmitted within 30 days. Over a quarter of these readmissions could be avoided with appropriate and timely healthcare interventions. The Centers for Medicare and Medicaid Services estimate that they spent over $17 billion per year on avoidable readmissions in 2015. In addition, there are nearly 100 hospitals that are fined over $1M annually for having hospital readmission rates much higher than industry averages. Insurers, accountable care organizations, self-insured employers such as large hospital systems, and health plans seek to decrease preventable readmissions to provide high quality care while managing their medical loss ratios. The busiest hospitals, consistently operating near or over maximum bed capacity lose revenue from low acuity preventable readmissions that reduce the institution’s case-mix index. The goal for the proposed technology is to provide better care to patients while simultaneously lowering costs for hospitals and insurers alike.This I-Corps project is based on the development of a software platform that includes machine learning algorithms to predict hospital readmission risk and identify specific factors contributing most to that risk for individual patients. The proof-of-concept for this technology was built using data from approximately 80,000 patient encounters over two years at a major academic medical center. It outperformed widely used industry standards by approximately 40%. These algorithms incorporate both modifiable and unmodifiable risk factors including various social determinants of health and incorporate fairness criteria to ensure predictions don’t reinforce biases of societal structures. Since these contributing risk factors may vary widely from one population to the next, each healthcare system or insurer requires their own unique predictive model based on their data. The proposed next steps are to identify and prioritize customer needs for the application of this technology such as algorithm validation services for each customer’s patient population, electronic health record interoperability, and user interface design.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
更广泛的影响/通讯是通过适当和及时的医疗保健介绍避免使用预测建模工具。高于行业的平均值。 Sile Sile Sile Sile siltaneusls的成本都是医院的成本。该I-Corps项目是在软件平台上开发的,其中包括机器学习算法,以预测医院的Readmississk并确定对单个患者的最大贡献对于大约两年来,在一个主要的学术医疗中心使用大约tient的数据来建立技术。社会结构。健康记录互操作性和用户界面设计。此ARD使用Foundation MPACTS审查标准反映了NSF的值得进行的舒适评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Buckley其他文献

Ryan Buckley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Buckley', 18)}}的其他基金

I-Corps: Non-invasive Indirect Calorimetry using Transdermal Optical Sensors for Diagnosis and Treatment of Metabolic Diseases
I-Corps:使用透皮光学传感器进行非侵入性间接量热法诊断和治疗代谢性疾病
  • 批准号:
    2324768
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

移动应用云平台中未知恶意软件检测关键技术
  • 批准号:
    62372121
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
  • 批准号:
    22373112
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
工程结构复杂行为仿真模拟新方法与软件平台
  • 批准号:
    52238001
  • 批准年份:
    2022
  • 资助金额:
    269 万元
  • 项目类别:
    重点项目
动量空间原子分子强场超快动力学开源软件平台的开发及应用
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
多探针PET脑成像数据联合分析方法的研究及软件平台的建立
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    61 万元
  • 项目类别:
    面上项目

相似海外基金

Closed-loop attention bias modification brain training for opioid use disorder
针对阿片类药物使用障碍的闭环注意偏差修正大脑训练
  • 批准号:
    10699099
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
I-Corps: Software platform to construct career resources for college students
I-Corps:为大学生构建职业资源的软件平台
  • 批准号:
    2330984
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: A Software Platform to Customize, Inspect and Improve Artificial Intelligence (AI) Systems
I-Corps:用于定制、检查和改进人工智能 (AI) 系统的软件平台
  • 批准号:
    2341135
  • 财政年份:
    2023
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Novel File Exchange Software Platform to Increase Patient Volume and Hospital System Efficiency
I-Corps:新型文件交换软件平台,可增加患者数量和医院系统效率
  • 批准号:
    2204754
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Privacy-preserving data sharing software platform
I-Corps:隐私保护数据共享软件平台
  • 批准号:
    2243653
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了