Categorical Symmetries of Operator Algebras

算子代数的分类对称性

基本信息

  • 批准号:
    2247202
  • 负责人:
  • 金额:
    $ 26.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Symmetries are a fundamental part of the way we mathematically model the physical world. They provide a paradigm for characterizing physical theories across the spectrum, from high energy to condensed matter physics. Traditionally, symmetries are described by mathematical objects called groups. However, in recent decades, interesting quantum theories have emerged whose fundamental symmetries are not reversible, requiring an extension of our classical ideas of symmetry beyond groups. Quantum theories can be described in the language of operator algebras, and these new kinds of symmetry can be realized by mathematical objects called tensor categories acting on operator algebras. The goal of this project is to provide classification results for categorical symmetry of operator algebras with an emphasis on situations relevant to quantum spin systems. These results will, in particular, help provide a rigorous understanding of topologically ordered phases of matter. This project will incorporate research opportunities for graduate and undergraduate students at North Carolina State University, with an emphasis on the recruitment of students from underrepresented groups.This project has two main components. In the first, the principal investigator will provide a classification of approximately finite dimensional actions of amenable tensor categories on approximately finite dimensional C*-algebras in terms of K-theoretic invariants. Amenable tensor categories simultaneously generalize discrete amenable groups and the representation categories of compact groups, while approximately finite dimensional actions provide categorical generalizations of global symmetries of 1D lattice spin systems. The principal investigator will extend their previous results in this direction from the case of fusion categories to the infinite amenable setting and apply these results to obtain new classifications for topologically ordered spin systems. In the second component, the principal investigator will generalize their previously developed categorical chi invariant for von Neumann algebras to an invariant for group actions on von Neumann algebras. The principal investigator will use this invariant to distinguish group actions on McDuff factors.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对称性是我们对物理世界进行数学建模的基本组成部分。它们提供了表征从高能物理到凝聚态物理等各个领域的物理理论的范例。传统上,对称性是通过称为群的数学对象来描述的。然而,近几十年来,出现了有趣的量子理论,其基本对称性是不可逆的,需要将我们经典的对称性思想扩展到群之外。量子理论可以用算子代数的语言来描述,而这些新的对称性可以通过作用于算子代数的称为张量范畴的数学对象来实现。该项目的目标是提供算子代数的分类对称性的分类结果,重点是与量子自旋系统相关的情况。这些结果尤其有助于提供对物质的拓扑有序相的严格理解。 该项目将为北卡罗来纳州立大学的研究生和本科生提供研究机会,重点是从代表性不足的群体中招募学生。该项目有两个主要组成部分。首先,主要研究者将根据 K 理论不变量提供近似有限维 C* 代数上合适张量类别的近似有限维作用的分类。顺应张量类别同时概括离散顺应群和紧群的表示类别,而近似有限维作用提供一维晶格自旋系统的全局对称性的分类概括。首席研究员将在这个方向上将他们之前的结果从融合类别的情况扩展到无限适合的设置,并应用这些结果来获得拓扑有序自旋系统的新分类。在第二部分中,主要研究者将把他们之前开发的冯诺依曼代数的分类卡不变量推广到冯诺依曼代数的群作用的不变量。主要研究者将利用这一不变量来区分 McDuff 因素的群体行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Corey Jones其他文献

Alteration of OBCAM conformation as a result of opioid receptor expression and opioid ligand treatment
阿片受体表达和阿片配体治疗导致 OBCAM 构象的改变
  • DOI:
    10.1016/0006-8993(95)00721-2
  • 发表时间:
    1995-11-06
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    C. M. Lane;Corey Jones;T. Reisine;Lei Yu;N. Lee
  • 通讯作者:
    N. Lee
A Multiplexed Mass Spectrometry-Based Assay for Robust Quantification of Phosphosignaling in Response to DNA Damage
基于多重质谱的检测对 DNA 损伤响应的磷酸信号传导进行稳健定量
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Jeffrey R. Whiteaker;Lei Zhao;R. Saul;Jan Kaczmarczyk;Regine M. Schoenherr;H. D. Moore;Corey Jones;R. Ivey;ChenWei Lin;Tara Hiltke;K. Reding;G. Whiteley;Pei Wang;A. Paulovich
  • 通讯作者:
    A. Paulovich
Community Screening Outcomes for Diabetes, Hypertension, and Cholesterol: Nashville REACH 2010 Project
糖尿病、高血压和胆固醇的社区筛查结果:纳什维尔 REACH 2010 项目
  • DOI:
    10.1097/jac.0b013e3181dd4619
  • 发表时间:
    2010-04-01
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Kushal A. Patel;C. Larson;M. Hargreaves;D. Schlundt;Hong Wang;Corey Jones;Katina R Beard
  • 通讯作者:
    Katina R Beard
Annular representation theory with applications to approximation and rigidity properties for rigid C*-tensor categories
环形表示理论及其在刚性 C* 张量类别的近似和刚性特性中的应用
  • DOI:
  • 发表时间:
    2016-04-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Corey Jones
  • 通讯作者:
    Corey Jones
Evaluation of the efficacy of tulathromycin as a metaphylactic antimicrobial in feedlot calves.
评估图拉霉素作为饲养场犊牛后生抗菌药物的功效。

Corey Jones的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Corey Jones', 18)}}的其他基金

Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
  • 批准号:
    2100531
  • 财政年份:
    2020
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Standard Grant
Applications of Tensor Categories in Operator Algebras
张量范畴在算子代数中的应用
  • 批准号:
    1901082
  • 财政年份:
    2019
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Standard Grant

相似国自然基金

革兰氏阴性菌脂质不对称性维持通路MlaFEDBCA的结构与机制研究
  • 批准号:
    82372297
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
模对称性及其在味物理中的应用
  • 批准号:
    12375104
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
过冷Ga基液态金属团簇对称性与物性不连续演变的构效关系研究
  • 批准号:
    52301207
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
磁场对称性对等离子体流、湍流及输运垒的影响研究
  • 批准号:
    12311540010
  • 批准年份:
    2023
  • 资助金额:
    19 万元
  • 项目类别:
    国际(地区)合作与交流项目
季节不对称性气候变暖对高寒草地植物秋季物候的影响机制
  • 批准号:
    32371618
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Study of operator algebras and quantum symmetries
算子代数和量子对称性的研究
  • 批准号:
    20H01805
  • 财政年份:
    2020
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Quantized Symmetries in Operator Algebras and Quantum Information
算子代数和量子信息中的量化对称性
  • 批准号:
    2000331
  • 财政年份:
    2020
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Standard Grant
Quantum Symmetries: Approximation Properties, Operator Algebras, and Applications to Quantum Information
量子对称性:近似性质、算子代数以及在量子信息中的应用
  • 批准号:
    1700267
  • 财政年份:
    2017
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Standard Grant
Research of symmetries arising from automorphisms of operator algebras
算子代数自同构引起的对称性研究
  • 批准号:
    16K05180
  • 财政年份:
    2016
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Research on structural symmetries of vertex operator algebras
顶点算子代数的结构对称性研究
  • 批准号:
    16K05073
  • 财政年份:
    2016
  • 资助金额:
    $ 26.81万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了