CAREER: Scalable, Penetrating Multimodal Neural Interfaces for Adaptive Closed-Loop Neuromodulation

职业:用于自适应闭环神经调节的可扩展、穿透性多模态神经接口

基本信息

  • 批准号:
    2145412
  • 负责人:
  • 金额:
    $ 58.28万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-06-01 至 2027-05-31
  • 项目状态:
    未结题

项目摘要

In the United States, anxiety disorders are the most prevalent neuropsychiatric illness, defined as an illness of the mind and nervous system, yet standard treatments for these disorders have failed to show a significant reduction in the prevalence or severity of illness. A major challenge is that anxiety disorders develop from disruptions in highly interconnected groups of brain areas, which are referred to as neural circuits, and the appropriate technologies to characterize these neural circuits are lacking. This CAREER project will develop and leverage a neural interface technology to characterize neural circuits impacted by anxiety disorders. Ultimately the work will increase understanding of neural mechanisms underscoring anxiety-related behavior and potentially lead to new treatment options. The research objectives in this proposal are integrated with an educational and outreach plan to increase visibility and training in neuroengineering. Specifically, the plan includes the following activities: establishing a neuroengineering research concentration; experiential learning and mentoring opportunities for women and underrepresented minorities; interactive and remote learning outreach activities; and multidisciplinary training for graduate and undergraduate students. The shortcomings of existing therapies for neuropsychiatric illnesses, such as anxiety, highlight the urgent need to better understand functional interactions in the affected neural circuits. The goal of this CAREER project is to develop a transformative multimodal neural interface fabrication process and design that will pave the way for establishing neural circuit mechanisms of anxiety-related behavior. Existing multimodal neural interfaces typically leverage manual assembly techniques that are not practically scalable and fail to reach brain areas beyond the superficial cortex. These shortcomings will be addressed by two foci. The Engineering Focus will develop microfabrication and microassembly processes for a neural interface design that can be easily optimized to different applications. The advantages of developing these processes include greater device yield, lower variation in fabricated devices, and design scalability to high channel counts. This work also distinguishes itself from the state-of-the-art in its holistic design that leverages a highly biocompatible material that easily integrates with the fabrication pipeline and is appropriate for multimodal functionality. Under the Biological Focus, the deep penetrating neural interface will be used to examine how approach-avoidance choice information is represented and communicated across relevant neural circuitry and implement an electrical neuromodulation paradigm to establish causal circuit mechanisms underlying aberrant changes in anxiety-related behavior. The knowledge gained through this work will provide a fundamentally new strategy to develop scalable multimodal neural interfaces and lay the foundation for neural circuit-level characterizations of any neurological condition – ultimately leading to new neuromodulatory interventions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,焦虑症是最常见的神经精神疾病,被定义为一种精神和神经系统疾病,但这些疾病的标准治疗未能显着降低疾病的患病率或严重程度。焦虑症是由高度互连的大脑区域组(称为神经回路)的破坏引起的,并且缺乏表征这些神经回路的适当技术。该职业项目将开发和利用神经接口技术来表征受影响的神经回路。最终是由焦虑症引起的。将增加对强调焦虑相关行为的神经机制的理解,并可能带来新的治疗选择。该提案中的研究目标与教育和推广计划相结合,以提高神经工程的知名度和培训。具体来说,该计划包括以下活动:建立神经工程研究中心;为女性和代表性不足的少数群体提供体验式学习和指导机会;为研究生和本科生提供互动和多学科培训。需要更好地了解受影响的神经回路中的功能相互作用。该职业项目的目标是开发一种变革性的多模态神经接口制造过程和设计,为建立现有的多模态神经接口的神经回路机制铺平道路。通常利用不可扩展的手动组装技术,并且无法到达浅表皮层以外的大脑区域。工程焦点将通过两个重点来解决神经接口设计的微加工和微组装工艺。开发这些工艺的优点包括更高的器件产量、更低的制造器件变化以及高通道数的设计可扩展性。整体设计利用高度生物相容性的材料,可轻松与制造流程集成,并适用于多模式功能。在生物焦点下,深度穿透神经接口将用于检查如何在相关神经中表示和传达接近-回避选择信息。电路并实施电神经调节范式,以建立焦虑相关行为异常变化背后的因果回路机制。通过这项工作获得的知识将为开发可扩展的多模态神经接口提供一种全新的策略,并为任何神经回路级表征奠定基础。神经系统疾病——最终导致新的神经调节干预措施。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
“Mind-Reading” Machines
– 读心术 – 机器
  • DOI:
    10.3389/frym.2022.771696
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lu, Hung-Yun;Jeanpierre, Grace M.;Mitchell, Jaz;Santacruz, Samantha R.
  • 通讯作者:
    Santacruz, Samantha R.
How Your Sense of Touch Can Change Your Brain
你的触觉如何改变你的大脑
  • DOI:
    10.3389/frym.2022.772919
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stealey, Hannah M.;Zhao, Yi;Chang, Yin-Jui;Santacruz, Samantha R.
  • 通讯作者:
    Santacruz, Samantha R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Samantha Santacruz其他文献

Samantha Santacruz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
  • 批准号:
    12371366
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
基于可扩展功能单元的液晶软驱动机械超材料研究
  • 批准号:
    52373173
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
  • 批准号:
    MR/Y011686/1
  • 财政年份:
    2025
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Fellowship
DREAM Sentinels: Multiplexable and programmable cell-free ADAR-mediated RNA sensing platform (cfRADAR) for quick and scalable response to emergent viral threats
DREAM Sentinels:可复用且可编程的无细胞 ADAR 介导的 RNA 传感平台 (cfRADAR),可快速、可扩展地响应突发病毒威胁
  • 批准号:
    2319913
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Standard Grant
RestoreDNA: Development of scalable eDNA-based solutions for biodiversity regulators and nature-related disclosure
RestoreDNA:为生物多样性监管机构和自然相关披露开发可扩展的基于 eDNA 的解决方案
  • 批准号:
    10086990
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Collaborative R&D
Scalable and Automated Tuning of Spin-based Quantum Computer Architectures
基于自旋的量子计算机架构的可扩展和自动调整
  • 批准号:
    2887634
  • 财政年份:
    2024
  • 资助金额:
    $ 58.28万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了