Scalable indoor power harvesters using halide perovskites

使用卤化物钙钛矿的可扩展室内能量收集器

基本信息

  • 批准号:
    MR/Y011686/1
  • 负责人:
  • 金额:
    $ 75.48万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2025
  • 资助国家:
    英国
  • 起止时间:
    2025 至 无数据
  • 项目状态:
    未结题

项目摘要

Buildings are the largest consumers of primary energy; consuming ~30% of it and also the building sector accounts for ~28% of total CO2 emissions globally. Recent studies have shown that by incorporating smart technologies such as the Internet of Things (IoT) into the buildings' energy system, energy savings of up to ~45 % are possible. IoT refers to a smart network of internet-connected everyday electrical and electronic devices which can communicate with each other and respond rapidly in real time. IoT-incorporated smart buildings have the promising potential to save our limited energy supply and reduce the waste of resources, money and time by continuously monitoring the different processes in buildings and optimising energy use. A smart building will utilise innumerable wireless sensors such as occupancy, humidity, temperature, proximity etc to monitor different processes and energy consumption. The latest market analysis (McKinsey & Company 2021) has shown that by 2030, the economic potential of IoT would range from $5.5 to 12.6 trillion and there would be more than 1 trillion connected devices. More than half of these devices and one-third of the economic value potential are expected to come from 'indoor' settings. How are we going to power these billions of connected devices? Connecting these sensor devices to the electrical grid is unfeasible as it requires extensive and complex installation and wiring, restructuring of the buildings, and limits the sensors' portable deployability across the buildings. The use of batteries is not sustainable as the limited lifespan of the batteries brings service interruptions during a battery replacement, increases maintenance costs, and poses severe environmental issues at their disposal. Moreover, once IoT has reached its projected wireless sensor nodes of one trillion, millions of battery replacements would be required per day which is unsustainable and impractical. My proposed research will bring a practical solution to this by developing inexpensive and environmentally friendly power sources by harvesting the freely available energy inside the buildings such as light from artificial light sources, heat energy and mechanical energy from electrical appliances which are otherwise lost as a wasted form of energy. For this, I will tune the properties of a family of electronic materials called 'hybrid perovskites'. The two physical properties that I envisage exploiting for this 'multiple' energy harvesting are (a) photovoltaic - converting light to electricity and (b) piezoelectricity - converting mechanical vibrations to electricity. The hybrid energy harvesters that I develop will make the IoT technology more sustainable by reducing their sole dependence on batteries, and accelerate the wide acceptance of IoT in other applications such as in complete digitisation of manufacturing (industry 4.0), health care, agriculture, precision farming, smart city and transportation settings. In addition to the IoT, the hybrid harvesters that I develop will make other emerging technologies such as Wearables more sustainable and the associated data collection, especially related to health monitoring, more reliable.
建筑物是一次能源的最大消耗者;消耗了约 30% 的能源,建筑行业的二氧化碳排放量约占全球二氧化碳排放总量的 28%。最近的研究表明,通过将物联网 (IoT) 等智能技术融入建筑物的能源系统,可以节省高达 45% 的能源。物联网是指由连接互联网的日常电气和电子设备组成的智能网络,这些设备可以相互通信并实时快速响应。结合物联网的智能建筑具有广阔的潜力,可以通过持续监控建筑物的不同过程并优化能源使用来节省有限的能源供应并减少资源、金钱和时间的浪费。智能建筑将利用无数无线传感器(例如占用情况、湿度、温度、接近度等)来监控不同的过程和能源消耗。 最新的市场分析(麦肯锡公司 2021)显示,到 2030 年,物联网的经济潜力将在 5.5 至 12.6 万亿美元之间,连接设备将超过 1 万亿台。超过一半的这些设备和三分之一的经济价值潜力预计将来自“室内”环境。我们将如何为这数十亿台联网设备提供动力?将这些传感器设备连接到电网是不可行的,因为它需要广泛而复杂的安装和布线、建筑物的重组,并限制了传感器在建筑物内的便携式部署能力。电池的使用是不可持续的,因为电池的有限使用寿命会导致电池更换期间的服务中断,增加维护成本,并造成严重的环境问题。此外,一旦物联网达到预计的一万亿个无线传感器节点,每天将需要更换数百万次电池,这是不可持续且不切实际的。我提出的研究将为此提供一个实用的解决方案,通过收集建筑物内免费提供的能源,例如人造光源的光、电器的热能和机械能,开发廉价且环保的电源,否则这些能源就会作为浪费而损失掉。能量形式。 为此,我将调整称为“混合钙钛矿”的电子材料系列的特性。我设想利用这种“多重”能量收集的两种物理特性是(a)光伏 - 将光转换为电能和(b)压电 - 将机械振动转换为电能。我开发的混合能量采集器将通过减少物联网技术对电池的唯一依赖而使物联网技术更具可持续性,并加速物联网在其他应用中的广泛接受,例如制造业的完全数字化(工业4.0)、医疗保健、农业、精密农业、智慧城市和交通环境。除了物联网之外,我开发的混合收割机将使可穿戴设备等其他新兴技术更具可持续性,并使相关数据收集(尤其是与健康监测相关的数据收集)更加可靠。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lethy Krishnan Jagadamma其他文献

Correction to High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.
通过稳健的自组装单层膜校正高效胶体量子点光伏。
  • DOI:
    10.1021/acs.nanolett.5b04797
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Gi;F. P. García de Arquer;Yung Jin Yoon;Xinzheng Lan;Mengxia Liu;O. Voznyy;Lethy Krishnan Jagadamma;Abdullah Saud Abbas;Zhenyu Yang;Fengjia Fan;Alexander H. Ip;P. Kanjanaboos;S. Hoogland;A. Amassian;Jin Young Kim;E. Sargent
  • 通讯作者:
    E. Sargent

Lethy Krishnan Jagadamma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lethy Krishnan Jagadamma', 18)}}的其他基金

Indoor power harvesting using hybrid perovskite materials
使用混合钙钛矿材料进行室内能量收集
  • 批准号:
    MR/T022094/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Fellowship

相似国自然基金

自然语言驱动的建筑物室内外一体化矢量模型重建方法
  • 批准号:
    42371457
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
紧耦合多源传感器数据的室内鲁棒定位与建图关键技术研究
  • 批准号:
    62302092
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
室内环境菌群吲哚类代谢物对儿童哮喘的保护模型及抗炎通路调控
  • 批准号:
    42307541
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向陌生环境的室内机器人感知与决策方法研究
  • 批准号:
    62306247
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Additive manufacturing of indoor power generating devices (Phase I)
室内发电装置增材制造(一期)
  • 批准号:
    561742-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Idea to Innovation
Indoor power harvesting using hybrid perovskite materials
使用混合钙钛矿材料进行室内能量收集
  • 批准号:
    MR/T022094/1
  • 财政年份:
    2020
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Fellowship
SBIR Phase I: Perovskite photovoltaics for indoor power supply applications
SBIR 第一阶段:用于室内供电应用的钙钛矿光伏发电
  • 批准号:
    1747302
  • 财政年份:
    2018
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Standard Grant
Indoor position estimation using floor fingerprint
使用地板指纹进行室内位置估计
  • 批准号:
    17K00138
  • 财政年份:
    2017
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Feasibility of developing novel high-efficiency power management to enable indoor autonomous wireless devices powered by innovative flexible organic photovoltaics.
开发新型高效电源管理的可行性,使室内自主无线设备能够由创新的柔性有机光伏发电供电。
  • 批准号:
    131963
  • 财政年份:
    2015
  • 资助金额:
    $ 75.48万
  • 项目类别:
    Feasibility Studies
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了