Scalable indoor power harvesters using halide perovskites
使用卤化物钙钛矿的可扩展室内能量收集器
基本信息
- 批准号:MR/Y011686/1
- 负责人:
- 金额:$ 75.48万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2025
- 资助国家:英国
- 起止时间:2025 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Buildings are the largest consumers of primary energy; consuming ~30% of it and also the building sector accounts for ~28% of total CO2 emissions globally. Recent studies have shown that by incorporating smart technologies such as the Internet of Things (IoT) into the buildings' energy system, energy savings of up to ~45 % are possible. IoT refers to a smart network of internet-connected everyday electrical and electronic devices which can communicate with each other and respond rapidly in real time. IoT-incorporated smart buildings have the promising potential to save our limited energy supply and reduce the waste of resources, money and time by continuously monitoring the different processes in buildings and optimising energy use. A smart building will utilise innumerable wireless sensors such as occupancy, humidity, temperature, proximity etc to monitor different processes and energy consumption. The latest market analysis (McKinsey & Company 2021) has shown that by 2030, the economic potential of IoT would range from $5.5 to 12.6 trillion and there would be more than 1 trillion connected devices. More than half of these devices and one-third of the economic value potential are expected to come from 'indoor' settings. How are we going to power these billions of connected devices? Connecting these sensor devices to the electrical grid is unfeasible as it requires extensive and complex installation and wiring, restructuring of the buildings, and limits the sensors' portable deployability across the buildings. The use of batteries is not sustainable as the limited lifespan of the batteries brings service interruptions during a battery replacement, increases maintenance costs, and poses severe environmental issues at their disposal. Moreover, once IoT has reached its projected wireless sensor nodes of one trillion, millions of battery replacements would be required per day which is unsustainable and impractical. My proposed research will bring a practical solution to this by developing inexpensive and environmentally friendly power sources by harvesting the freely available energy inside the buildings such as light from artificial light sources, heat energy and mechanical energy from electrical appliances which are otherwise lost as a wasted form of energy. For this, I will tune the properties of a family of electronic materials called 'hybrid perovskites'. The two physical properties that I envisage exploiting for this 'multiple' energy harvesting are (a) photovoltaic - converting light to electricity and (b) piezoelectricity - converting mechanical vibrations to electricity. The hybrid energy harvesters that I develop will make the IoT technology more sustainable by reducing their sole dependence on batteries, and accelerate the wide acceptance of IoT in other applications such as in complete digitisation of manufacturing (industry 4.0), health care, agriculture, precision farming, smart city and transportation settings. In addition to the IoT, the hybrid harvesters that I develop will make other emerging technologies such as Wearables more sustainable and the associated data collection, especially related to health monitoring, more reliable.
建筑物是主要能源的最大消费者;消耗约30%的人,建筑部门占全球总二氧化碳排放量的约28%。最近的研究表明,通过将物联网(IoT)等智能技术纳入建筑物的能源系统,可以节省高达约45%的能源。物联网是指一个与Internet连接的日常电气和电子设备的智能网络,该网络可以相互通信并实时迅速响应。通过物联网合并的智能建筑具有有希望的潜力,可以通过不断监视建筑物中的不同流程并优化能源使用,从而节省有限的能源供应,并减少资源,金钱和时间的浪费。智能建筑将利用无数的无线传感器,例如占用,湿度,温度,接近等,以监视不同的过程和能耗。 最新的市场分析(McKinsey&Company 2021)表明,到2030年,物联网的经济潜力将在5.5美元到12.6万亿美元之间,并且将有超过1万亿的连接设备。这些设备中有一半以上和三分之一的经济价值预计将来自“室内”环境。我们将如何为这数十亿个连接的设备提供动力?将这些传感器设备连接到电网是不可行的,因为它需要广泛而复杂的安装和接线,建筑物的重组,并限制了传感器在整个建筑物中的便携式可部署性。由于电池的使用寿命有限,电池的使用是不可持续的,因此在更换电池期间会带来服务中断,增加了维护成本,并带来了严重的环境问题。此外,一旦物联网达到了预计的无线传感器节点1万亿个,每天将需要数百万个电池更换,这是不可持续且不切实际的。我提出的研究将通过收集建筑物内的自由使用的能源,例如来自人造光源的光,热能和机械能量的电器,从浪费的能量中丢失,从而为此带来了实用的解决方案。 为此,我将调整称为“混合钙钛矿”的电子材料家族的特性。我设想利用此“多重”能量收集的两种物理特性是(a)光伏 - 将光转换为电能,并且(b)压电 - 将机械振动转换为电力。我开发的混合能量收割机将通过减少对电池的唯一依赖,并加速物联网在其他应用中的广泛接受,例如制造业(行业4.0),卫生保健,农业,农业,精确农业,智能城市和运输设置,从而使物联网技术更加可持续。除了物联网外,我开发的混合收割机还将使其他新兴技术(例如可穿戴设备)更具可持续性和相关的数据收集,尤其是与健康监测相关的数据,更可靠。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lethy Krishnan Jagadamma其他文献
Correction to High-Efficiency Colloidal Quantum Dot Photovoltaics via Robust Self-Assembled Monolayers.
通过稳健的自组装单层膜校正高效胶体量子点光伏。
- DOI:
10.1021/acs.nanolett.5b04797 - 发表时间:
2016 - 期刊:
- 影响因子:10.8
- 作者:
Gi;F. P. García de Arquer;Yung Jin Yoon;Xinzheng Lan;Mengxia Liu;O. Voznyy;Lethy Krishnan Jagadamma;Abdullah Saud Abbas;Zhenyu Yang;Fengjia Fan;Alexander H. Ip;P. Kanjanaboos;S. Hoogland;A. Amassian;Jin Young Kim;E. Sargent - 通讯作者:
E. Sargent
Lethy Krishnan Jagadamma的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lethy Krishnan Jagadamma', 18)}}的其他基金
Indoor power harvesting using hybrid perovskite materials
使用混合钙钛矿材料进行室内能量收集
- 批准号:
MR/T022094/1 - 财政年份:2020
- 资助金额:
$ 75.48万 - 项目类别:
Fellowship
相似国自然基金
基于睡眠期间血氧饱和度探讨室内超细颗粒物短期暴露与慢性阻塞性肺疾病患者心肺健康的关联及其机制
- 批准号:22376005
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
室内环境菌群吲哚类代谢物对儿童哮喘的保护模型及抗炎通路调控
- 批准号:42307541
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
内建电场与外部光场对Cu2ZnSn(S,Se)4室内柔性光伏电池性能的协同调控作用
- 批准号:52372183
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
室内空气中半挥发性有机物的动态行为研究:通过综合观测实验评估稳态机制模型的适用性
- 批准号:22376003
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于中间带工程的非铅锑基钙钛矿薄膜制备及室内光伏性能研究
- 批准号:12304043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Additive manufacturing of indoor power generating devices (Phase I)
室内发电装置增材制造(一期)
- 批准号:
561742-2021 - 财政年份:2021
- 资助金额:
$ 75.48万 - 项目类别:
Idea to Innovation
Indoor power harvesting using hybrid perovskite materials
使用混合钙钛矿材料进行室内能量收集
- 批准号:
MR/T022094/1 - 财政年份:2020
- 资助金额:
$ 75.48万 - 项目类别:
Fellowship
SBIR Phase I: Perovskite photovoltaics for indoor power supply applications
SBIR 第一阶段:用于室内供电应用的钙钛矿光伏发电
- 批准号:
1747302 - 财政年份:2018
- 资助金额:
$ 75.48万 - 项目类别:
Standard Grant
Indoor position estimation using floor fingerprint
使用地板指纹进行室内位置估计
- 批准号:
17K00138 - 财政年份:2017
- 资助金额:
$ 75.48万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Feasibility of developing novel high-efficiency power management to enable indoor autonomous wireless devices powered by innovative flexible organic photovoltaics.
开发新型高效电源管理的可行性,使室内自主无线设备能够由创新的柔性有机光伏发电供电。
- 批准号:
131963 - 财政年份:2015
- 资助金额:
$ 75.48万 - 项目类别:
Feasibility Studies