Collaborative Research: A Whole-Community Effort to Understand Biases and Uncertainties in Using Emerging Big Data for Mobility Analysis
协作研究:全社区共同努力,了解使用新兴大数据进行出行分析时的偏差和不确定性
基本信息
- 批准号:2114197
- 负责人:
- 金额:$ 17.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
This NSF grant will quantify the biases and uncertainties associated with human mobility patterns when they are derived from big mobile data such as cell phone data, mobile app data and social media data. Information on human mobility patterns, or where and how Americans live, work and go about their daily activities, is the basis of hundreds of billions' investment for the nation's transportation infrastructures. These investment decisions have a direct impact on Americans’ upward social mobility, health, and well-being. The project is motivated by two factors: first, big mobile data increasingly replaces traditional household survey data in mobility analysis; and second, big mobile data is fundamentally unrepresentative (and biased) and a direct application of the results derived from such data can have substantial negative impacts on Americans’ health, prosperity and welfare. Novel education and outreach activities organically integrated with the research, including a collaboration with the Boston Museum of Science for a digital exhibit on mobility tales around the world, and a mini-track competition with MetroLab on “future mobility and justice for students around the world.”In addition to quantifying the biases and uncertainties associated with mobility patterns, this grant will also identify the extent those biases and uncertainties are affected by a number of factors, e.g., data characteristics, the modeling techniques used, and geographical differences. More specifically, the project comprises three research thrusts. Thrust 1 engages stakeholders and the research community to develop a solicitation calling for mobility labs around the world to submit critical mobility metrics, using their own data and methods. Thrust 2 involves the development of two novel methodologies: a coupled Bootstrap computational framework to quantify biases and uncertainties associated with derived mobility metrics and a rule-based learning framework to handle sparsity issues that likely arise during the analysis stage. Thrust 3 involves all participating labs for results summarization and dissemination. The project will unite multiple disciplines from transportation engineering to systems engineering, computer/information science, and social science in a concerted effort for better understanding the uncertainties and biases in mobility analysis when big mobile data is used. The results from the project will also provide practical insights for practitioners in using big mobile data for mobility analysis.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国国家科学基金会的这笔拨款将量化与人类流动模式相关的偏差和不确定性,这些偏差和不确定性来自手机数据、移动应用程序数据和社交媒体数据等有关人类流动模式的信息,或者美国人在哪里以及如何生活、工作。这些投资决策直接影响美国人的社会流动性、健康和福祉。 :第一,移动大数据日益取代传统流动性分析中的家庭调查数据;其次,大移动数据根本上不具有代表性(并且有偏见),直接应用从这些数据中得出的结果可能会对美国人的健康、繁荣和福利产生重大负面影响。与研究有机结合,包括与波士顿科学博物馆合作举办关于世界各地流动性故事的数字展览,以及与 MetroLab 合作举办“未来流动性和世界各地学生的正义”的迷你赛道竞赛。量化相关的偏差和不确定性对于流动模式,这笔赠款还将确定这些偏差和不确定性受多种因素影响的程度,例如具体的数据特征、所使用的建模技术和地理差异。此外,该项目包括三个研究重点。 Thrust 2 涉及开发两种新颖的方法:耦合的 Bootstrap 计算框架,用于量化偏差和偏差。 Thrust 3 涉及与导出的移动指标相关的不确定性和基于规则的学习框架,以处理分析阶段可能出现的稀疏性问题,该项目将联合从运输工程到系统工程的多个学科。该项目的结果也将为从业者使用移动大数据进行移动分析提供实用见解。本次获奖通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qi Wang其他文献
cm3WiNoCs: Congestion-Aware Millimeter-Wave Multichannel Wireless Networks-on-Chip
cm3WiNoCs:拥塞感知毫米波多通道无线片上网络
- DOI:
10.1109/access.2020.2970425 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:3.9
- 作者:
Dedong Zhao;Yiming Ouyang;Qi Wang;Huaguo Liang - 通讯作者:
Huaguo Liang
Optimization of PEC and photocathodic protection performance of TiO2/CuInS2 heterojunction photoanodes
TiO2/CuInS2异质结光阳极的PEC和光阴极保护性能优化
- DOI:
10.1088/1361-6528/ac9482 - 发表时间:
2022-09-23 - 期刊:
- 影响因子:3.5
- 作者:
Hongmei Cheng;Xiaotian Wang;Z. Bai;Chuang Zhu;Zhibo Zhang;Q. Zhang;Qi Wang - 通讯作者:
Qi Wang
Dynamic Access Control and Authorization System based on Zero-trust architecture
基于零信任架构的动态访问控制与授权系统
- DOI:
10.1145/3437802.3437824 - 发表时间:
2020-10-27 - 期刊:
- 影响因子:0
- 作者:
Qigui Yao;Qi Wang;Xiaojian Zhang;Jiaxuan Fei - 通讯作者:
Jiaxuan Fei
State shareholding in privately-owned firms and greenwashing
国有控股民营企业与绿色清洗
- DOI:
10.1016/j.frl.2024.105176 - 发表时间:
2024-02-01 - 期刊:
- 影响因子:10.4
- 作者:
Qi Wang;Zhong Ma;Jinying Zhao;Guang Shu - 通讯作者:
Guang Shu
Probing Non-Uniform Adsorption in Multicomponent Metal-Organic Frameworks via Segmental Dynamics by Solid-State Nuclear Magnetic Resonance.
通过固态核磁共振的分段动力学探测多组分金属有机框架中的非均匀吸附。
- DOI:
10.1021/acs.jpclett.0c01593 - 发表时间:
2020-08-10 - 期刊:
- 影响因子:0
- 作者:
Hanxi Guan;Jia;Tianyou Zhou;Z. Pang;Yao Fu;Joel Cornelio;Qi Wang;S. Telfer;X. Kong - 通讯作者:
X. Kong
Qi Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Qi Wang', 18)}}的其他基金
Towards efficient state estimation in wall-bounded flows: hierarchical adjoint data assimilation
实现壁界流中的有效状态估计:分层伴随数据同化
- 批准号:
2332057 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
Collaborative Research: SAI-R: Dynamical Coupling of Physical and Social Infrastructures: Evaluating the Impacts of Social Capital on Access to Safe Well Water
合作研究:SAI-R:物理和社会基础设施的动态耦合:评估社会资本对获得安全井水的影响
- 批准号:
2228533 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
The 48th Northeast Bioengineering Conference
第48届东北生物工程大会
- 批准号:
2225607 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
I-Corps: Enhancing Sensory Processing via Noninvasive Neuromodulation
I-Corps:通过无创神经调节增强感觉处理
- 批准号:
2232149 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
Collaborative Research: SAI-R: Dynamical Coupling of Physical and Social Infrastructures: Evaluating the Impacts of Social Capital on Access to Safe Well Water
合作研究:SAI-R:物理和社会基础设施的动态耦合:评估社会资本对获得安全井水的影响
- 批准号:
2228533 - 财政年份:2022
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
Collaborative Research: Advancing STEM Online Learning by Augmenting Accessibility with Explanatory Captions and AI
协作研究:通过解释性字幕和人工智能增强可访问性,推进 STEM 在线学习
- 批准号:
2118824 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
SCC-IRG Track 2: Toxic-Free Footprints to Improve Community Health against Respiratory Hazards
SCC-IRG 第 2 轨道:无毒足迹改善社区健康,预防呼吸系统危害
- 批准号:
2125326 - 财政年份:2021
- 资助金额:
$ 17.69万 - 项目类别:
Continuing Grant
RAPID/Collaborative Research: High-Frequency Data Collection for Human Mobility Prediction during COVID-19
RAPID/协作研究:用于 COVID-19 期间人类流动性预测的高频数据收集
- 批准号:
2027744 - 财政年份:2020
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
CAREER: Enhancing perception and cognition while minimizing side effects through closed-loop peripheral neural stimulation
职业:通过闭环周围神经刺激增强感知和认知,同时最大限度地减少副作用
- 批准号:
1847315 - 财政年份:2019
- 资助金额:
$ 17.69万 - 项目类别:
Continuing Grant
Collaborative Research: Computational Modeling of How Living Cells Utilize Liquid-Liquid Phase Separation to Organize Chemical Compartments
合作研究:活细胞如何利用液-液相分离来组织化学区室的计算模型
- 批准号:
1815921 - 财政年份:2018
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
相似国自然基金
基于肿瘤病理图片的靶向药物敏感生物标志物识别及统计算法的研究
- 批准号:82304250
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠道普拉梭菌代谢物丁酸抑制心室肌铁死亡改善老龄性心功能不全的机制研究
- 批准号:82300430
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
社会网络关系对公司现金持有决策影响——基于共御风险的作用机制研究
- 批准号:72302067
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向图像目标检测的新型弱监督学习方法研究
- 批准号:62371157
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向开放域对话系统信息获取的准确性研究
- 批准号:62376067
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: CEDAR--A Whole-Atmospheric Perspective on Connections between Intra-Seasonal Variations in the Troposphere and Thermosphere
合作研究:CEDAR——对流层和热层季节内变化之间联系的整体大气视角
- 批准号:
2332817 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
Collaborative Research: DMS/NIGMS 2: Novel machine-learning framework for AFMscanner in DNA-protein interaction detection
合作研究:DMS/NIGMS 2:用于 DNA-蛋白质相互作用检测的 AFM 扫描仪的新型机器学习框架
- 批准号:
10797460 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Collaborative Research: Whole Ecosystem Test of Restoring Resilience in Lakes
合作研究:恢复湖泊恢复能力的全生态系统测试
- 批准号:
2318567 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别:
Standard Grant
Characterizing the genetic etiology of delayed puberty with integrative genomic techniques
利用综合基因组技术表征青春期延迟的遗传病因
- 批准号:
10663605 - 财政年份:2023
- 资助金额:
$ 17.69万 - 项目类别: