Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning

协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习

基本信息

  • 批准号:
    2140477
  • 负责人:
  • 金额:
    $ 6万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2023-09-30
  • 项目状态:
    已结题

项目摘要

Researchers and the public have been alarmed by a fact that user privacy of training data in machine learning (ML) models has been exploited in many ways, leading to a rapidly expanding field of federated learning(FL). In FL, the learning of ML models is performed directly on user devices, while the aggregated model is composed with a help of a central server. As data never leave user devices, this new paradigm offers a key promise to protect data privacy. It, unfortunately, poses new challenges in both security and privacy. On one hand, malicious users can compromise security by injecting backdoors into the model updates, thus poisoning the aggregated model. On the other hand, there is a risk of privacy leakage as an untrusted server can inverse the model update to expose private data. This project develops a principled and systematic FL framework that simultaneously offers both privacy and security protection against threats from malicious users and servers. As part of this project, novel protocols will be developed to ensure verifiability, execution integrity, model confidentiality, and protection against adversarial attacks. The success of the project holds significant potential in expanding machine learning to new application scenarios, especially, when no trust is assumed among the stakeholders. The findings may also benefit other fields, such as zero-knowledge proof, distributed machine learning, and distributed ledger technology. The project involves students at all levels, with an emphasis on attracting students from underrepresented groups and K-12 students.The focus of the project is to develop a principled and systematic FL framework with three jointly key components: 1) a lightweight secure aggregation and backdoor inspection mechanisms in which each user is responsible for both securely aggregating their values and an attestation of an attack-free model, 2) a succinct non-interactive argument of knowledge (SNARK) attestation that minimizes non-arithmetic operations to maintain both high accuracy and communication-efficiency, and 3) a blockchain-based FL architecture to tight together security measures at various stages in the training process, offering privacy and security protection for the entire training process. By shifting a task of proving that model is free-of-attack to users, coupling of Blockchain for transparency, this project provides a first step towards a secured and privacy protection of distributed learning systems. The success of this novel approach will significantly impact the design of FL for many real-life applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
研究人员和公众对机器学习中培训数据(ML)模型中的用户隐私已通过多种方式进行了震惊,从而导致了迅速扩展的联邦学习领域(FL)。在FL中,ML模型的学习直接在用户设备上执行,而汇总模型则在中央服务器的帮助下组成。由于数据永远不会离开用户设备,因此这个新范式提供了保护数据隐私的关键承诺。不幸的是,它在安全和隐私方面构成了新的挑战。一方面,恶意用户可以通过将后门注入模型更新来损害安全性,从而使汇总模型中毒。另一方面,存在隐私泄漏的风险,因为不受信任的服务器可以反向模型更新以暴露私人数据。该项目开发了一个有原则的系统的FL框架,同时为恶意用户和服务器的威胁提供隐私和安全保护。作为该项目的一部分,将开发新的协议,以确保可验证性,执行完整性,模型机密性和防止对抗性攻击的保护。该项目的成功具有将机器学习扩展到新的应用程序方案的巨大潜力,尤其是在利益相关者中没有信任时。这些发现还可能使其他领域受益,例如零知识证明,分布式机器学习和分布式分类帐技术。该项目涉及各级学生,重点是吸引来自代表性不足的小组和K-12学生的学生。该项目的重点是开发一个具有三个共同关键组成部分的原则性和系统的FL框架:1)轻巧的安全聚合和一个轻巧的安全汇总和后门检查机制,每个用户都负责安全地汇总其价值和对无攻击模型的证明,2)简洁的非相互作用的知识论证(SNARK)证明(SNARK)证明,以最大程度地降低非偏心操作以保持高精度和沟通效率以及3)基于区块链的FL体系结构,在培训过程中的各个阶段将安全措施整合在一起,为整个培训过程提供隐私和安全保护。通过转移一项证明模型对用户的攻击,区块链的透明度耦合的任务,该项目为分布式学习系统的安全隐私保护提供了第一步。这种新颖的方法的成功将对许多现实生活应用的设计产生重大影响。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响审查标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Active Membership Inference Attack under Local Differential Privacy in Federated Learning
  • DOI:
    10.48550/arxiv.2302.12685
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Truc D. T. Nguyen;Phung Lai;K. Tran;Nhathai Phan;M. Thai
  • 通讯作者:
    Truc D. T. Nguyen;Phung Lai;K. Tran;Nhathai Phan;M. Thai
Denial-of-Service Vulnerability of Hash-Based Transaction Sharding: Attack and Countermeasure
  • DOI:
    10.1109/tc.2022.3174560
  • 发表时间:
    2020-07
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Truc D. T. Nguyen;M. Thai
  • 通讯作者:
    Truc D. T. Nguyen;M. Thai
Preserving Privacy and Security in Federated Learning
  • DOI:
    10.1109/tnet.2023.3302016
  • 发表时间:
    2022-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Truc D. T. Nguyen;M. Thai
  • 通讯作者:
    Truc D. T. Nguyen;M. Thai
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

My Thai其他文献

My Thai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('My Thai', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
  • 批准号:
    2323794
  • 财政年份:
    2023
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
  • 批准号:
    2123809
  • 财政年份:
    2021
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
  • 批准号:
    1935923
  • 财政年份:
    2020
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
III: Small: Collaborative Research: Stream-Based Active Mining at Scale: Non-Linear Non-Submodular Maximization
III:小型:协作研究:基于流的大规模主动挖掘:非线性非子模最大化
  • 批准号:
    1908594
  • 财政年份:
    2019
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
NeTS: Small: Collaborative Research: Lightweight Adaptive Algorithms for Network Optimization at Scale towards Emerging Services
NetS:小型:协作研究:面向新兴服务的大规模网络优化的轻量级自适应算法
  • 批准号:
    1814614
  • 财政年份:
    2018
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
EARS: Collaborative Research: Laying the Foundations of Social Network-Aware Cellular Device-to-Device Communications
EARS:协作研究:为社交网络感知的蜂窝设备到设备通信奠定基础
  • 批准号:
    1443905
  • 财政年份:
    2015
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
Collaborative Research: RIPS Type 2: Vulnerability Assessment and Resilient Design of Interdependent Infrastructures
合作研究:RIPS 类型 2:相互依赖基础设施的漏洞评估和弹性设计
  • 批准号:
    1441231
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
CIF: Small: Modeling and Dynamic Analyzing for Multiplex Social Networks
CIF:小型:多重社交网络的建模和动态分析
  • 批准号:
    1422116
  • 财政年份:
    2014
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant
CAREER: Optimization Models and Approximation Algorithms for Network Vulnerability and Adaptability
职业:网络脆弱性和适应性的优化模型和近似算法
  • 批准号:
    0953284
  • 财政年份:
    2010
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
SGER: A New Approach for Identifying DoS Attackers Based on Group Testing Techniques
SGER:基于组测试技术识别 DoS 攻击者的新方法
  • 批准号:
    0847869
  • 财政年份:
    2008
  • 资助金额:
    $ 6万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317232
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Using Intelligent Conversational Agents to Empower Adolescents to be Resilient Against Cybergrooming
合作研究:SaTC:核心:中:使用智能会话代理使青少年能够抵御网络诱骗
  • 批准号:
    2330940
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338301
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: SaTC: CORE: Medium: Differentially Private SQL with flexible privacy modeling, machine-checked system design, and accuracy optimization
协作研究:SaTC:核心:中:具有灵活隐私建模、机器检查系统设计和准确性优化的差异化私有 SQL
  • 批准号:
    2317233
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
  • 批准号:
    2338302
  • 财政年份:
    2024
  • 资助金额:
    $ 6万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了