SaTC: CORE: Small: Collaborative: When Adversarial Learning Meets Differential Privacy: Theoretical Foundation and Applications
SaTC:核心:小型:协作:当对抗性学习遇到差异性隐私时:理论基础和应用
基本信息
- 批准号:1935923
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The pervasiveness of machine learning exposes new and severe vulnerabilities in software systems, where deployed deep neural networks can be exploited to reveal sensitive information in private training data, and to make the models misclassify. However, existing learning algorithms have not been designed to be simultaneously robust to such privacy and integrity attacks, in both theory and practice. In field trials, such lack of protection and efficacy significantly degrades the performance of machine learning-based systems, and puts sensitive data at high risk, thereby exposing service providers to legal action based on HIPAA/HITECH law and related regulations. This project aims to develop the first framework to advance and seamlessly integrate key techniques, including adversarial learning, privacy preserving, and certified defenses, offering tight and reliable protection against both privacy and integrity attacks, while retaining high model utility in deep neural networks. The system is being developed for scalable, complex, and commonly used machine learning frameworks, providing a fundamental impact to both industry and educational environments.An ultimate goal of this project is to build a core foundation of privacy preservation in adversarial learning, to better address the trade-off between model utility, privacy loss, and certified defenses. Accordingly, the team theoretically connects adversarial learning and privacy preservation by introducing a new set of rigorous theories to address the trade-off between model utility and privacy loss. To further strengthen the safety of the system, the team will conduct a new class of attacks towards discovering previously unknown and unprotected vulnerabilities, including highly sensitive and hidden correlation structures among data instances, which will be used to amplify existing model attacks. Based upon that effort, vulnerable features and correlations will be automatically identified and protected, towards unified robust and privacy preserving learning, given both model training and inference. Finally, the team will optimize the trade-off among model utility, privacy loss, and certified defenses. The project is expected to lay a theoretical and practical foundation of key privacy-preserving techniques to protect users' personal and highly sensitive data in adversarial learning under model attacks.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
机器学习的普遍性暴露了软件系统中的新脆弱性,可以利用部署的深层神经网络在私人培训数据中揭示敏感信息,并使模型错误分类。但是,在理论和实践中,现有的学习算法并未设计为对这种隐私和诚信攻击的同时稳健。在现场试验中,这种缺乏保护和功效会大大降低基于机器学习的系统的性能,并使敏感数据处于高风险,从而使服务提供商根据HIPAA/HITECH/HITECH LAW及其相关法规将服务提供商暴露于法律诉讼中。该项目旨在开发第一个框架,以促进和无缝整合关键技术,包括对抗性学习,保留隐私和认证的防御,从而对隐私和诚信攻击提供严格而可靠的保护,同时保留深层神经网络中的高模型效用。该系统是针对可扩展,复杂且常用的机器学习框架开发的,对行业和教育环境产生了根本的影响。该项目的最终目标是在对抗性学习中建立隐私保护的核心基础,以更好地解决问题模型效用,隐私损失和认证防御能力之间的权衡。因此,从理论上讲,团队通过引入一套新的严格理论来解决模型效用与隐私损失之间的权衡,从而将对抗性学习和隐私保护联系起来。为了进一步加强系统的安全性,团队将进行新的攻击,以发现以前未知和未受保护的漏洞,包括数据实例之间高度敏感和隐藏的相关结构,这些结构将用于扩大现有的模型攻击。基于这一努力,鉴于模型培训和推理,将自动识别和保护脆弱的特征和相关性,以朝着统一的稳健和隐私保留学习。最后,团队将优化模型公用事业,隐私损失和认证防御的权衡。预计该项目将在模型攻击下为用户在对抗性学习中保护用户的个人和高度敏感数据的主要隐私技术的理论和实用基础。这项奖项反映了NSF的法定任务,并被认为是通过使用评估来支持的。基金会的智力优点和更广泛的影响评论标准。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
XRand: Differentially Private Defense against Explanation-Guided Attacks
- DOI:10.48550/arxiv.2212.04454
- 发表时间:2022-12
- 期刊:
- 影响因子:0
- 作者:Truc D. T. Nguyen;Phung Lai;Nhathai Phan;M. Thai
- 通讯作者:Truc D. T. Nguyen;Phung Lai;Nhathai Phan;M. Thai
Continual Learning with Differential Privacy
具有差异隐私的持续学习
- DOI:10.1007/978-3-030-92310-5_39
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Desai, Pradnya;Lai, Phung;Phan, NhatHai;Thai, My T.
- 通讯作者:Thai, My T.
Scalable Differential Privacy with Certified Robustness in Adversarial Learning
- DOI:
- 发表时间:2019-03
- 期刊:
- 影响因子:0
- 作者:HaiNhat Phan;M. Thai;Han Hu;R. Jin;Tong Sun;D. Dou
- 通讯作者:HaiNhat Phan;M. Thai;Han Hu;R. Jin;Tong Sun;D. Dou
Active Membership Inference Attack under Local Differential Privacy in Federated Learning
- DOI:10.48550/arxiv.2302.12685
- 发表时间:2023-02
- 期刊:
- 影响因子:0
- 作者:Truc D. T. Nguyen;Phung Lai;K. Tran;Nhathai Phan;M. Thai
- 通讯作者:Truc D. T. Nguyen;Phung Lai;K. Tran;Nhathai Phan;M. Thai
Heterogeneous Randomized Response for Differential Privacy in Graph Neural Network
图神经网络中差分隐私的异构随机响应
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tran, Khang;Lai, Phung;Phan, NhatHai;Khalil, Issa;Ma, Yao;Khreishah, Abdallah;Thai, My T;Wu, Xintao
- 通讯作者:Wu, Xintao
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
My Thai其他文献
My Thai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('My Thai', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: Information Integrity: A User-centric Intervention
协作研究:SaTC:核心:媒介:信息完整性:以用户为中心的干预
- 批准号:
2323794 - 财政年份:2023
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: SaTC: EAGER: Trustworthy and Privacy-preserving Federated Learning
协作研究:SaTC:EAGER:值得信赖且保护隐私的联邦学习
- 批准号:
2140477 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Trustworthy and Explainable AI for Neurodegenerative Diseases
合作研究:SCH:值得信赖且可解释的人工智能治疗神经退行性疾病
- 批准号:
2123809 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
III: Small: Collaborative Research: Stream-Based Active Mining at Scale: Non-Linear Non-Submodular Maximization
III:小型:协作研究:基于流的大规模主动挖掘:非线性非子模最大化
- 批准号:
1908594 - 财政年份:2019
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Lightweight Adaptive Algorithms for Network Optimization at Scale towards Emerging Services
NetS:小型:协作研究:面向新兴服务的大规模网络优化的轻量级自适应算法
- 批准号:
1814614 - 财政年份:2018
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
EARS: Collaborative Research: Laying the Foundations of Social Network-Aware Cellular Device-to-Device Communications
EARS:协作研究:为社交网络感知的蜂窝设备到设备通信奠定基础
- 批准号:
1443905 - 财政年份:2015
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
Collaborative Research: RIPS Type 2: Vulnerability Assessment and Resilient Design of Interdependent Infrastructures
合作研究:RIPS 类型 2:相互依赖基础设施的漏洞评估和弹性设计
- 批准号:
1441231 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CIF: Small: Modeling and Dynamic Analyzing for Multiplex Social Networks
CIF:小型:多重社交网络的建模和动态分析
- 批准号:
1422116 - 财政年份:2014
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
CAREER: Optimization Models and Approximation Algorithms for Network Vulnerability and Adaptability
职业:网络脆弱性和适应性的优化模型和近似算法
- 批准号:
0953284 - 财政年份:2010
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SGER: A New Approach for Identifying DoS Attackers Based on Group Testing Techniques
SGER:基于组测试技术识别 DoS 攻击者的新方法
- 批准号:
0847869 - 财政年份:2008
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
相似国自然基金
核受体RORgamma调控肿瘤微生态促进非小细胞肺癌恶性进展的作用机制研究
- 批准号:82373186
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
肾去交感神经术促进下丘脑室旁核小胶质细胞M2型极化减轻心衰损伤的机制研究
- 批准号:82370387
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于NRF2调控KPNB1促进PD-L1核转位介导非小细胞肺癌免疫治疗耐药的机制研究
- 批准号:82303969
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
前丘脑室旁核小胶质细胞经由TNF-α参与强迫进食行为的作用及机制研究
- 批准号:82301521
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞调控外侧隔核-腹侧被盖区神经环路介导社交奖赏障碍的机制研究
- 批准号:82304474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SaTC: CORE: Small: An evaluation framework and methodology to streamline Hardware Performance Counters as the next-generation malware detection system
SaTC:核心:小型:简化硬件性能计数器作为下一代恶意软件检测系统的评估框架和方法
- 批准号:
2327427 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338301 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
Collaborative Research: NSF-BSF: SaTC: CORE: Small: Detecting malware with machine learning models efficiently and reliably
协作研究:NSF-BSF:SaTC:核心:小型:利用机器学习模型高效可靠地检测恶意软件
- 批准号:
2338302 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Continuing Grant
SaTC: CORE: Small: NSF-DST: Understanding Network Structure and Communication for Supporting Information Authenticity
SaTC:核心:小型:NSF-DST:了解支持信息真实性的网络结构和通信
- 批准号:
2343387 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant
NSF-NSERC: SaTC: CORE: Small: Managing Risks of AI-generated Code in the Software Supply Chain
NSF-NSERC:SaTC:核心:小型:管理软件供应链中人工智能生成代码的风险
- 批准号:
2341206 - 财政年份:2024
- 资助金额:
$ 25万 - 项目类别:
Standard Grant