RAPID/Collaborative Research: Data Collection for Robot-Oriented Disaster Site Modeling at Champlain Towers South Collapse

快速/协作研究:尚普兰塔南倒塌的面向机器人的灾难现场建模数据收集

基本信息

  • 批准号:
    2140451
  • 负责人:
  • 金额:
    $ 5.77万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2022-12-31
  • 项目状态:
    已结题

项目摘要

This Grant for Rapid Response Research (RAPID) will support a collaborative team of researchers from Florida State University, Texas A&M University, and Carnegie Mellon University to operate under the supervision of the Miami Dade Fire Rescue Department and Florida Task Force 1 at the site of the Champlain Towers South condominium collapse in Surfside, Florida. This project will address the need for a robot-oriented model of rubble by using unmanned aerial system (UAS) imagery and other contextual information. The lack of a robot-oriented model of rubble is a major barrier to the design and manufacture of effective, economical, and reliable ground robots for disasters and other extreme environments. Although structural engineering teams are also investigating the site, they do not capture data about the factors that impact whether a robot can navigate the interior of a building collapse. This project will benefit society by facilitating the design and deployment of robots to save lives, either to find survivors in rubble otherwise inaccessible to humans and dogs or by reducing the need for human responders to enter unsafe areas. The team is diverse, with a woman as the principal investigator, and will train a diverse set of students to conduct robotics research for disasters.The team will: 1) assist rescue, recovery, and forensic structural teams by collecting UAS images of the collapse from response through recovery, 2) collect and analyze data on UAS performance relating to flights, missions, data processing, and operations tempo, 3) analyze orthomosaic and digital elevation imagery to formally model traversability constraints for ground robots in extreme environments, including features such as scale, shape, and surface properties, 4) curate images for general use and archive on the Texas Data Repository open source dataverse site, and 5) attempt to create a 3D visualization of the voids in the interior of the rubble from the progressively uncovered site via a subtractive and labeling process. The research will create a new fundamental research methodology for analyzing disasters, and extreme environments in general, from the perspective of ground and aerial robotic systems. The image datasets may also enable the computer vision machine learning communities to recognize structural conditions and indications of survivors. The results of the study will be made freely available, including a workshop, and will improve use of robots in future disasters by formalizing design features and offering a rapid recognition of which robot types to deploy for what conditions. This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项快速响应研究赠款(Rapid)将支持来自佛罗里达州立大学,得克萨斯州农工大学和卡内基·梅隆大学的研究人员的合作团队,以在迈阿密达德消防救援部和佛罗里达特遣部队的监督下进行操作。尚普兰(Champlain)在佛罗里达州苏尔菲斯(Surfside)的南公寓倒塌。该项目将通过使用无人驾驶系统(UAS)图像和其他上下文信息来满足以机器人为导向的瓦砾模型的需求。缺乏面向机器人的瓦砾模型是设计和制造有效,经济和可靠的地面机器人为灾难和其他极端环境设计的主要障碍。尽管结构工程团队也在调查该站点,但他们并未捕获有关影响机器人是否可以导航建筑物内部崩溃的因素。该项目将通过促进机器人的设计和部署来挽救生命,从而使社会受益,要么在瓦砾中找到幸存者,否则人类和狗无法接近,或者通过减少人类响应者进入不安全地区的需求。该团队多样化,女性是主要的调查员,将培训一系列学生为灾难进行机器人研究研究。该团队将:1)通过收集崩溃的UAS图像来协助救援,康复和法医结构团队从恢复的响应到恢复,2)收集和分析与飞行,任务,数据处理和操作节奏有关的UAS性能的数据,3)分析正组菌和数字高程图像,以正式建模极端环境中地面机器人的遍历性约束,包括包括此类功能作为尺度,形状和表面特性,4)策划图像,用于在德克萨斯州数据存储库开源数据源站点上进行一般使用和存档,以及5)尝试从逐渐发现的rob虫内部的空隙中创建3D可视化。通过减法和标签过程站点。该研究将创建一种新的基本研究方法,用于分析灾难和极端环境,从地面和空中机器人系统的角度来看。图像数据集还可以使计算机视觉机器学习社区能够识别结构状况和幸存者的指示。该研究的结果将免费提供,包括研讨会,并通过形式化设计功能并在未来的灾难中改善机器人的使用,并提供快速认识到哪种机器人类型在哪种条件下进行部署。该项目得到了机器人技术计划的跨指导基础研究的支持,该项目由工程局(ENG)以及计算机和信息科学与工程(CISE)共同管理和资助。该奖项反映了NSF的法定任务,并被认为是值得的。通过基金会的智力优点和更广泛的影响评估标准通过评估来支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Comparison of Point Cloud Registration Techniques for On-Site Disaster Data from the Surfside Structural Collapse
表面结构倒塌现场灾害数据点云配准技术比较
Harnessing AI and robotics in humanitarian assistance and disaster response
在人道主义援助和灾难应对中利用人工智能和机器人技术
  • DOI:
    10.1126/scirobotics.adj2767
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    25
  • 作者:
    Manzini, Thomas;Murphy, Robin R.;Heim, Eric;Robinson, Caleb;Zarrella, Guido;Gupta, Ritwik
  • 通讯作者:
    Gupta, Ritwik
Analysis of Interior Rubble Void Spaces at Champlain Towers South Collapse
尚普兰塔南倒塌内部碎石空隙空间分析
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Robin Murphy其他文献

Smart film actuators using biomass plastic
使用生物质塑料的智能薄膜执行器
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    4.1
  • 作者:
    Satoshi Tadokoro;Robin Murphy;Samuel Stover;William Brack;Masashi Konyo;Toshihiko Nishimura;Osachika Tanimoto;米山聡,田中信雄
  • 通讯作者:
    米山聡,田中信雄
Preliminary Observation of HRI in Robot-Assisted Medical Response
HRI 在机器人辅助医疗救治中的初步观察
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Robin Murphy;Masashi Konyo;Satoshi Tadokoro;Pedro Davalas;Gabe Knezke;Maarten Van Zomeren
  • 通讯作者:
    Maarten Van Zomeren
Application of Active Scope Camera to Forensic Investigation of Construction Accident
主动式摄像头在建筑事故法医学调查中的应用

Robin Murphy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Robin Murphy', 18)}}的其他基金

RAPID/Collaborative Research: Datasets for Uncrewed Aerial System (UAS) and Remote Responder Performance from Hurricane Ian
RAPID/协作研究:飓风伊恩无人飞行系统 (UAS) 和远程响应器性能的数据集
  • 批准号:
    2306453
  • 财政年份:
    2023
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
SCC-CIVIC-PG Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-PG 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
  • 批准号:
    2043710
  • 财政年份:
    2021
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
EAGER: Evidence-Based Model of Adoption of Robotics for Pandemics and Natural Disasters
EAGER:采用机器人技术应对流行病和自然灾害的循证模型
  • 批准号:
    2125988
  • 财政年份:
    2021
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
SCC-CIVIC-FA Track B: Community-Centric Pre-Disaster Mitigation with Unmanned Aerial and Marine Systems
SCC-CIVIC-FA 轨道 B:利用无人机和海洋系统进行以社区为中心的灾前减灾
  • 批准号:
    2133297
  • 财政年份:
    2021
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
EAGER: Documenting and Analyzing Use of Robots for COVID-19
EAGER:记录和分析机器人在 COVID-19 中的使用情况
  • 批准号:
    2032729
  • 财政年份:
    2020
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
Best Viewpoints for External Robots or Sensors Assisting Other Robots
外部机器人或传感器协助其他机器人的最佳视角
  • 批准号:
    1945105
  • 财政年份:
    2019
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Machine Learning for Dehazing Unmanned Aerial System Imagery from Volcanic Eruptions
RAPID:协作研究:用于消除火山喷发无人机系统图像雾霾的机器学习
  • 批准号:
    1840873
  • 财政年份:
    2018
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Unmanned Aerial System Datasets from Hurricanes Harvey and Irma
RAPID:协作研究:飓风哈维和艾尔玛的无人机系统数据集
  • 批准号:
    1762137
  • 财政年份:
    2017
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
RAPID: Using an Unmanned Aerial Vehicle and Increased Autonomy to Improve an Unmanned Marine Vehicle Lifeguard Assistant Robot
RAPID:使用无人驾驶飞行器和增强的自主性来改进无人驾驶海上飞行器救生员助理机器人
  • 批准号:
    1637214
  • 财政年份:
    2016
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
WORKSHOP: HRI 2014 Pioneers
研讨会:HRI 2014 先锋
  • 批准号:
    1418922
  • 财政年份:
    2014
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area
RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集
  • 批准号:
    2427233
  • 财政年份:
    2024
  • 资助金额:
    $ 5.77万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了