RAPID: Collaborative Research: Multifaceted Data Collection on the Aftermath of the March 26, 2024 Francis Scott Key Bridge Collapse in the DC-Maryland-Virginia Area

RAPID:协作研究:2024 年 3 月 26 日 DC-马里兰-弗吉尼亚地区 Francis Scott Key 大桥倒塌事故后果的多方面数据收集

基本信息

  • 批准号:
    2427233
  • 负责人:
  • 金额:
    $ 8.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2024
  • 资助国家:
    美国
  • 起止时间:
    2024-04-15 至 2025-03-31
  • 项目状态:
    未结题

项目摘要

This Rapid Response Research (RAPID) grant project is dedicated to a comprehensive and in-depth collection of data to analyze the extensive societal consequences following the Francis Scott Key Bridge collapse in Baltimore, Maryland. This bridge, being a part of the I-695 beltway, lacks convenient detour options. Thus, its collapse leads widespread disruptions in mobility that affected not just the immediate vicinity but also resonated throughout the broader DC-Maryland-Virginia region. The objective of this project is to methodically gather time-sensitive data on traffic flow and community responses in the wake of this event, providing a detailed assessment of its repercussions. Moreover, this incident also brings a major disruption to freight transportation and supply chains on the East Coast. Given the reliance of freight models on occasionally collected, often proprietary data from commodities surveys, state reports, and customs statistics, this study aims to fill these gaps through an integrated approach for critical trucking, maritime, rail, and supply-chain data collection. These efforts are essential for enhancing the resilience of transportation networks and supply chains against future disruptions. For a broader audience, all the collected data will be made publicly available while carefully following rules for privacy protection and existing data usage agreements. Through sharing detailed findings and facilitating a broader understanding of the incident’s impacts, this project aspires to foster a more informed and prepared society, capable of effectively navigating the challenges posed by major infrastructural failures and their far-reaching impacts on communities and economies.The catastrophic collapse of the Francis Scott Key Bridge in Baltimore, Maryland, has precipitated significant disruptions across urban transportation networks, due to the lack of convenient alternative routes, affecting daily commutes for an estimated 34,000 individuals. Moreover, the collapse introduced considerable logistical difficulties, particularly in the Port of Baltimore, a critical national and international trade node. This project aims to develop a comprehensive data collection methodology, incorporating data integration and enhancement through existing data platforms (e.g., augmentations in commuting, trucking, rail, and marine traffic data alongside social media analytics), comprehensive surveys (e.g., examining travel behavior, community impact, and economic repercussions), and targeted interviews (e.g., exploring governmental responses and adaptations within the logistics network). Should initial analyses indicate a necessity, the spatial and temporal scope of data collection may be expanded to evaluate the impact of the bridge collapse comprehensively. This project is dedicated to improving data transparency and utility, employing elaborate documentation and a diversified strategy for data dissemination, including the development of a dedicated project website, utilization of the NSF NHERI Data Depot for data storage and dissemination, conducting workshops to engage a wide array of stakeholders, and presenting the data architecture at major transportation, infrastructure systems, and disaster conferences.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
这项快速响应研究(快速)赠款项目致力于全面而深入的数据集合,以分析马里兰州巴尔的摩的弗朗西斯·斯科特·钥匙桥崩溃后的广泛社会后果。这座桥是I-695环城公路的一部分,缺乏方便的弯路选择。这就是它的崩溃导致流动性的宽度破坏,不仅影响了附近的附近,而且在整个更广泛的DC-Maryland-Virginia地区都引起了共鸣。该项目的目的是有条不紊地收集有关此次活动后交通流量和社区反应的时间敏感数据,从而详细评估了其影响。此外,这一事件还给东海岸的货运连锁店带来了重大破坏。鉴于货运模型偶尔收集的货运模型,通常来自商品调查,州报告和海关统计数据的专有数据,本研究旨在通过关键的卡车运输,海上,铁路,铁路和供应链数据收集的综合方法来填补这些空白。这些努力对于增强运输网络的弹性和供应连锁店的弹性至关重要。对于更广泛的受众,所有收集的数据将公开提供,同时仔细遵循隐私保护和现有数据使用协议的规则。通过分享详细的发现并促进对事件影响的更广泛的了解,该项目渴望促进一个更有知识和准备的社会,能够有效地导致重大基础设施失败所带来的挑战及其对社区和经济的深远影响,对玛丽群岛的巨大桥梁的灾难性崩溃,这对玛丽群岛的灾难性崩溃,这是在玛丽群岛上造成的,这些灾难造成了巨大的脑海中的崩溃,却在Baltimore中造成了巨大的危害,该公司的危机,造成了巨大的影响,这些都在baltimore off truest offer。方便的替代路线,影响估计有34,000名个人的每日奉献。此外,崩溃带来了相当大的后勤困难,尤其是在巴尔的摩港口,这是一个关键的国家和国际贸易节点。该项目旨在开发全面的数据收集方法,通过现有数据平台(例如,通勤,卡车运输,铁路,铁路和海洋交通数据以及社交媒体分析以及全面的调查),综合调查(例如,检查旅行行为,社区影响和经济依据)以及对访谈的访谈(例如,在政府中进行了反应)(例如,探讨旅行行为,社区影响力和经济上的反应)(例如,对政府的响应)(例如,检查旅行行为,社区影响力和经济上的反应)(例如,综合媒体分析)(例如,综合媒体分析)(例如,综合媒体分析)(例如,检查了综合调查)(例如,对政府进行了反应)(例如,对政府的响应)(例如,对政府进行响应)(例如,综合媒体分析)。如果初步分析表明必要,则可以扩大数据收集的空间和临时范围,以全面评估桥梁塌陷的影响。该项目致力于提高数据透明度和效用,采用精致的文档和多样化的数据传播策略,包括开发专门的项目网站,利用NSF NHERI数据仓库来存储数据存储和传播,进行研讨会,以进行研讨会,以促进造成群体的广泛批准,并在主要的运输中颁发了灾难,并构建了主要的运输,并构建了灾难,并构建了灾难,并构建了灾难,并构建了Infrassrys,并促进了灾难,并促进了灾难,并构建了灾难,并促进了灾难,并构建了灾难,并介绍了灾难,并促进了灾难,并促进了灾难,并颁发了灾难,并进行了灾难,并促进了灾难。法定使命,并使用基金会的知识分子优点和更广泛的影响标准通过评估被认为是宝贵的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shanjiang Zhu其他文献

Enhancing Transportation Education Through On-Line Simulation Using an Agent-Based Demand and Assignment Model
使用基于代理的需求和分配模型通过在线模拟加强交通教育
Integrating an Agent-Based Travel Behavior Model with Large-Scale Microscopic Traffic Simulation for Corridor-Level and Sub-Area Transportation Operations and Planning Applications
将基于代理的出行行为模型与大规模微观交通仿真相结合,用于走廊级和分区交通运营和规划应用
  • DOI:
    10.1061/9780784412442.357
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lei Zhang;G. Chang;Shanjiang Zhu;Chenfeng Xiong;Longyuan Du;Mostafa Mollanejad;N. Hopper;S. Mahapatra
  • 通讯作者:
    S. Mahapatra
The Hierarchy of Roads, the Locality of Traffic, and Governance
道路的等级、交通的局部性和治理
Improving Inventory of and Investment in Bicycle and Pedestrian Facilities Through Targeted Public Outreach
通过有针对性的公众宣传改善自行车和行人设施的库存和投资
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu
The roads taken: theory and evidence on route choice in the wake of the I-35W Mississippi River bridge collapse and reconstruction.
  • DOI:
  • 发表时间:
    2010-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Shanjiang Zhu
  • 通讯作者:
    Shanjiang Zhu

Shanjiang Zhu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shanjiang Zhu', 18)}}的其他基金

RAPID: Transit Network Disruption, Service Reliability, and Travel Behavior
RAPID:交通网络中断、服务可靠性和出行行为
  • 批准号:
    1649189
  • 财政年份:
    2016
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
在线医疗团队协作模式与绩效提升策略研究
  • 批准号:
    72371111
  • 批准年份:
    2023
  • 资助金额:
    41 万元
  • 项目类别:
    面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
  • 批准号:
    62373044
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
  • 批准号:
    82372548
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
  • 批准号:
    32302064
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Unlocking the evolutionary history of Schiedea (carnation family, Caryophyllaceae): rapid radiation of an endemic plant genus in the Hawaiian Islands
合作研究:解开石竹科(石竹科)石竹的进化史:夏威夷群岛特有植物属的快速辐射
  • 批准号:
    2426560
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
RAPID: Reimagining a collaborative future: engaging community with the Andrews Forest Research Program
RAPID:重新构想协作未来:让社区参与安德鲁斯森林研究计划
  • 批准号:
    2409274
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
  • 批准号:
    2403883
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425431
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
Collaborative Research: RAPID: Investigating the magnitude and timing of post-fire sediment transport in the Texas Panhandle
合作研究:RAPID:调查德克萨斯州狭长地带火灾后沉积物迁移的程度和时间
  • 批准号:
    2425430
  • 财政年份:
    2024
  • 资助金额:
    $ 8.25万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了