Moldable, self-healing, highly conductive organic co-crystalline solid electrolytes for safer lithium ion batteries
可成型、自修复、高导电性有机共晶固体电解质,用于更安全的锂离子电池
基本信息
- 批准号:2138432
- 负责人:
- 金额:$ 48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Non-Technical SummaryFor this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the research groups of Profs. Zdilla and Wunder at Temple University are developing a new class of solid electrolyte separators for lithium-ion batteries. Current lithium-ion battery technology relies on the use of a flammable and potentially explosive liquid electrolyte which has led to battery fires and explosions in mobile devices, electric vehicles, and other applications. The development of solid, minimally flammable replacements would enhance the safety of these devices. However, many currently investigated solid electrolytes exhibit poor performance or incompatibility with existing battery chemistry. With this award, the principal investigators synthesize and study soft-solid co-crystalline electrolytes (i.e. electrolytes that combine two or more molecular components but form a uniform crystalline structure) to understand the fundamental materials chemistry that could enable higher-power performance and promise compatibility with existing and next-generation battery components. The researchers also use computational tools to better understand these materials that consist of new combinations of organic framework molecules and lithium-ion sources and characterize their electrochemical properties. The project serves the national interest by developing a fundamental understanding that enables technologies to improve the safety and performance of batteries, an ever-more central component of technology in mobile devices, transportation, and clean energy. Realization of safe, high-power, high-energy battery technology provides a path toward solar energy storage and decreased use of fossil fuels for transportation, both of which provide greater energy independence for the United States, and a means to decrease carbon footprint for the health of the climate. Further, this research serves to train the next generation of scientists at one of the most diverse schools in the country and serves underrepresented groups with great effect.Technical Summary.For this project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research, the research groups of Profs. Zdilla and Wunder at Temple University develop a new class of solid electrolyte separators for lithium-ion batteries. Progress in battery electrolyte research has been incremental and essentially relegated to modifications of liquid organic systems, solid polymers, and solid ceramics. The new class of solid electrolytes investigated under this effort has the potential to enable better conductivity than other solid organic electrolytes, while at the same time exhibiting better voltage stability and electrode stability windows than liquids, the current market standard. The researchers investigate the materials’ novel mechanophysical properties from a fundamental research perspective, including a developing a surface liquid layer that facilitates self-healing. While the concept of a surface liquid-solid equilibrium is known (as in the classic example of water-ice), this property has never been applied to electrolyte materials, and thus represents an opportunity for fundamental insights. The objectives of the research are: 1: Preparation and characterization of ion-matrix cocrystals with optimized conductivity and lithium-ion transference numbers (tLi+). This is achieved by maximizing the mobility of the cation while minimizing the mobility of the anion, which is achieved by designing matrices that interact strongly with the anion, but not with the cation. 2: Evaluation of electrochemical performance and mechanical/thermal properties. This is achieved using characterization using X-ray diffraction, electrochemical analysis (electrochemical impedance spectroscopy, cyclic voltammetry, linear sweep voltammetry, and cycling studies), thermal analysis (DSC, TGA), and post-mortem analysis by electron microscopy. 3: Modelling the physical properties and mechanism of ion conduction using molecular dynamics and quantum molecular computation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的非技术摘要,并得到材料研究部的固态和材料化学计划的支持,教授研究小组。 Temple University的Zdilla和Wunder正在为锂离子电池开发新的固体电解质分离器。当前的锂离子电池技术依赖于使用可燃烧且潜在的爆炸性液体电解质,这导致了移动设备,电动汽车和其他应用的电池火灾和爆炸。固体,最低限制的更换的开发将增强这些设备的安全性。但是,许多目前研究的固体电解质表现出较差的性能或与现有电池化学的不相容性。通过该奖项,主要研究人员合成并研究了软固化的二晶电解质(即结合了两个或多个分子组件但形成均匀结构结构的电解质),以了解可以启用具有更高POWER性能的基本材料化学性能,并具有更高的POWER性能,并承诺与现有和下一代电池组成组成。研究人员还使用计算工具更好地理解这些材料,这些材料包括有机框架分子和锂离子源的新组合,并表征其电化学性能。该项目通过建立一种基本的理解来使技术能够提高电池的安全性和性能,这是该项目的基本了解,这是电池的安全性和性能,这是移动设备,运输和清洁能源技术中越来越多的核心组成部分。实现安全,高功率,高能量电池技术为太阳能存储和扩展的化石燃料用于运输提供了途径,这两者都为美国提供了更大的能源独立性,并为降低气候健康的碳足迹提供了一种手段。此外,这项研究还可以在该国最多样化的学校之一培训下一代科学家,并为代表性不足的团体提供效果不佳的团体。技术摘要。对于该项目,在材料研究部中的固态和材料化学计划的支持下,PROFS研究小组。 Temple University的Zdilla和Wunder为锂离子电池开发了一类新的实心电解质分离器。电池电解质研究的进展与液体有机系统,固体聚合物和固体陶瓷的修饰基本上有关。与其他固体有机电解质相比,在此工作中研究的新的固体电解质具有更高的电导率,而与当前市场标准相比,与液体相比,电压稳定性和电极稳定性窗口更好。研究人员从基本研究的角度研究了材料的新型机械性能,包括开发促进自我修复的表面液体层。虽然表面液体固体等效平衡的概念已知(在水冰的经典示例中),但该特性从未应用于电解质材料,因此代表了基本见解的机会。研究的目的是:1:具有优化的电导率和锂离子传递数(TLI+)的离子 - 矩阵共晶的制备和表征。这是通过最大化阳离子的迁移率的同时最大程度地减少阴离子的迁移率来实现的,该阴离子的迁移率是通过设计与阴离子强烈相互作用但与阳离子相互作用的物质来实现的。 2:评估电化学性能和机械/热性能。这是使用X射线衍射,电化学分析(电化学障碍光谱,环状伏安法,线性扫描和循环研究),热分析(DSC,TGA)和通过电子显微镜通过电子显微镜分析来实现的。 3:使用分子动力学和量子分子计算对离子传导的物理特性和机制进行建模。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估被认为是宝贵的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A soft co-crystalline solid electrolyte for lithium-ion batteries
- DOI:10.1038/s41563-023-01508-1
- 发表时间:2023-04
- 期刊:
- 影响因子:41.2
- 作者:P. Prakash;Birane Fall;Jordan Aguirre;L. Sonnenberg;Parameswara Chinnam;Sumanth Chereddy;D. Dikin;A. Venkatnathan;S. Wunder;Michael J. Zdilla
- 通讯作者:P. Prakash;Birane Fall;Jordan Aguirre;L. Sonnenberg;Parameswara Chinnam;Sumanth Chereddy;D. Dikin;A. Venkatnathan;S. Wunder;Michael J. Zdilla
The High-Temperature Polymorph of LiBF 4
LiBF 4 的高温多晶型物
- DOI:10.1021/acs.jpclett.3c02961
- 发表时间:2024
- 期刊:
- 影响因子:0
- 作者:Sonnenberg, Laura A.;Chandra Paul, Shujit;Wunder, Stephanie L.;Zdilla, Michael J.
- 通讯作者:Zdilla, Michael J.
Mechanism of Ion Conduction and Dynamics in Tris( N , N -dimethylformamide) Perchloratosodium Solid Electrolytes
三(N,N-二甲基甲酰胺)高氯酸钠固体电解质中的离子传导和动力学机制
- DOI:10.1021/acs.jpcc.1c09005
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Prakash, Prabhat;Shylendran, Ardhra;Fall, Birane;Zdilla, Michael J.;Wunder, Stephanie L.;Venkatnathan, Arun
- 通讯作者:Venkatnathan, Arun
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Zdilla其他文献
Michael Zdilla的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Zdilla', 18)}}的其他基金
MRI: Acquisition of Crystallographic Equipment and Excellence in Crystallographic Science and Education at Temple University and the Surrounding Community
MRI:天普大学及周边社区晶体学设备的采购和卓越的晶体学科学与教育
- 批准号:
2215854 - 财政年份:2022
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
Conformationally-flexible, reactive manganese clusters to probe possible mechanisms of oxygen-oxygen bond formation in photosystem II
构象灵活的反应性锰簇探索光系统 II 中氧-氧键形成的可能机制
- 批准号:
1800105 - 财政年份:2018
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
SusChEM: Molecular organic frameworks for solid state ion channels with exceedingly simple design: Toward barrier-less ion migration
SusChEM:设计极其简单的固态离子通道的分子有机框架:实现无屏障离子迁移
- 批准号:
1437814 - 财政年份:2014
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER / SusChEM: Bio-inspired synthesis of conformationally flexible analogues of the biological oxygen evolving complex: A redesigned approach to manganese cluster molecules
职业 / SusChEM:生物放氧复合物构象灵活类似物的仿生合成:锰簇分子的重新设计方法
- 批准号:
1254545 - 财政年份:2013
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
相似国自然基金
Fibered纽结的自同胚、Floer同调与4维亏格
- 批准号:12301086
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
Self-DNA介导的CD4+组织驻留记忆T细胞(Trm)分化异常在狼疮肾炎发病中的作用及机制研究
- 批准号:82371813
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
“为自己的健康负责”——基于当责视角的健康管理APP对用户行为的作用机制研究
- 批准号:72302199
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于受体识别和转运整合的self-DNA诱导采后桃果实抗病反应的机理研究
- 批准号:32302161
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义测量的多体量子态self-test的实验研究
- 批准号:12104186
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Creating pH-sensitive self-healing concrete using sludge waste for sewers
利用下水道污泥废物制造 pH 敏感的自修复混凝土
- 批准号:
DP230100688 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects
Unlocking self-healing bio-concrete through multiscale modelling
通过多尺度建模解锁自愈生物混凝土
- 批准号:
DP240100851 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Discovery Projects
CAREER: AI-Enabled Self-Healing and Trusted Wireless Transceivers for Biomedical Applications
职业:用于生物医学应用的人工智能自我修复和可信无线收发器
- 批准号:
2339162 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant
RII Track-4: NSF: Self-healing Modular Panels for Space and Lunar Missions
RII Track-4:NSF:用于太空和月球任务的自愈模块化面板
- 批准号:
2327424 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Standard Grant
CAREER: Development of Self-Healing Electrocatalysts via a Tunable Non-Covalent Design
职业:通过可调谐非共价设计开发自修复电催化剂
- 批准号:
2338351 - 财政年份:2024
- 资助金额:
$ 48万 - 项目类别:
Continuing Grant