SusChEM: Molecular organic frameworks for solid state ion channels with exceedingly simple design: Toward barrier-less ion migration

SusChEM:设计极其简单的固态离子通道的分子有机框架:实现无屏障离子迁移

基本信息

  • 批准号:
    1437814
  • 负责人:
  • 金额:
    $ 55万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2014
  • 资助国家:
    美国
  • 起止时间:
    2014-07-15 至 2017-06-30
  • 项目状态:
    已结题

项目摘要

1437814 - ZdillaBatteries that can effectively, affordably and safely compete with the internal combustion engine require new materials development and design strategies. Energy storage in portable consumer rechargeable lithium ion batteries has reached ~ 3.0 Ah, insufficient for powering electric vehicles, but with reasonable, 30,000, charge/discharge cycles. The use of metallic lithium as the anode (to increase the cell voltage) and flow-through cathodes or cathodes in which oxygen is reduced, can increase energy density. Replacement of lithium with less expensive, more available sodium will reduce costs. However, current high energy and power density Li battery technology suffers from safety concerns and poor performance at low temperatures. Replacement of liquid electrolytes with solid electrolytes will improve safety, and development of low-barrier conducting materials will improve wintertime behavior. Next generation lithium batteries such as lithium air and flow-through cathode batteries have already been designed with solid electrolytes (alone or in combination with liquid electrolytes). Here, one aspect of this multidisciplinary problem will be addressed, namely the formation of soft solid crystal electrolytes with low-affinity channels for lithium or sodium ion conduction. All solid-state lithium ion organic conductors have the benefits of increased safety, but the limitation of poor ionic conductivity, while ceramic/glass conductors have higher ionic conductivities but are brittle and can have poor adhesion to the electrodes. Engineering of solid-state organic materials with specific ion conduction pathways that can enhance ion migration offers promise as a means to achieve higher solid-state ionic conductivities, while soft, more malleable organics will afford better adhesion to the electrodes. There is only limited progress in this area, making the development of new synthetic routes for the formation of specific architectures with ion channels an important avenue of research.Proposed is a project on design and fabrication of a novel class of solid electrolytes made from lithium salt cocrystals. The proposed materials posess ion channels with weak interactions between the ions and channel walls. These weak interactions arise from the deliberate use of polarizable (soft) functionality on the walls, which interact poorly with the non-polarizable (hard) lithium ions according to the Pearson Hard Soft Acid Base Concept. The resulting materials will be soft solids with good conductivity, decreased flamability, and improved low-temperature conduction. Two preliminary materials show lithium ion conduction with negligible activation barrier, and equal conductivity at room temperature and -78 C. A major goal of the proposed work is to increase the thermal stability of prototype materials at high temperatures. This will be achieved by developing systems with greater intermolecular interactions through pi-stacking or covalent linkage. The resulting materials would be the first solid electrolytes to have favorable conductivities over the entire range of global temperatures. Variation of anion size and matrix affinity will be used to optimize the selective conduction of cations in the matrix. The use of sodium ions in place of lithium ions will also be explored in an effort to design electrolytes for sodium batteries as well. These materials will be fabricated into films for device testing. Preliminary results on the use of Polyhedral oligomeric silsesquioxane polyethylene glycol (POSS-PEG) as a binder are promising, and provide junctions between the cocrystals for DC conductivity without affecting the temperature independent behavior.Intellectual Merit :The proposed class of materials represent a new class of material for solid electrolytes. They exhibit behavior slightly superior to pure polymer electrolytes at room temperature, and exceeding superiority at low temperature. Such materials have the potential to lead to the design of solid state batteries that work across all ranges of global temperature, and posess increased safety due to the absence of volatile flammable electrolytes.Broader Impacts :Energy renewables is an increasingly important sector of the United States Economy. Batteries will continue to play a major role in energy storage for some time. The proposed work may lead to new materials for the improvement of safety and functioning of batteries for the betterment of US energy independence. More importantly, the project will train young scientists in order to supply the market's increasing demand in the field of ion conduction, which is relevant to numerous applications in this growing economic sector.
1437814-可以有效,负担得起,安全地与内燃机竞争的Zdillabatteries需要新的材料开发和设计策略。便携式消费者可充电锂离子电池中的储能已达到〜3.0 ah,不足以为电动汽车供电,但具有合理的30,000,充电/放电周期。将金属锂用作阳极(增加细胞电压)和流通阴极或氧气中的阴极的使用可以增加能量密度。用较便宜,更多可​​用的钠代替锂将降低成本。但是,当前的高能量和功率密度LI电池技术在低温下的安全性问题和性能较差。用固体电解质代替液体电解质将提高安全性,而低障碍导电材料的开发将改善冬季行为。下一代锂电池,例如锂空气和流动阴极电池已经使用固体电解质(单独或与液体电解质结合)设计。在这里,将解决此多学科问题的一个方面,即具有低亲和力通道的软固体晶体电解质的形成,用于锂或钠离子传导。所有固态锂离子有机导体都具有提高安全性的好处,但是离子电导率差的局限性,而陶瓷/玻璃导体的离子电导率较高,但易碎且对电极的粘附较差。具有特定离子传导途径的固态有机材料的工程,可以增强离子迁移的途径提供了希望,作为实现较高固态离子电导率的手段,而柔软,更可延展的有机物将提供更好的粘附电极。在这一领域的进步只有有限的进步,这使得用离子通道形成特定体系结构的新合成途径成为研究的重要途径。公认是针对由锂盐共晶制成的新型固体电解质设计和制造的项目。提出的材料posess离子通道在离子和通道壁之间存在弱相互作用。这些弱相互作用是由在墙壁上故意使用可极化(软)功能的,它们根据Pearson Hard Soft Soft Aid Base概念与不可碰撞(硬)锂离子相互作用。所得的材料将是柔软的固体,具有良好的电导率,降低的燃烧性和改善的低温传导。两种初步材料表明,锂离子传导含量可忽略不计,在室温下和-78C。拟议工作的主要目标是提高原型材料在高温下的热稳定性。这将通过开发具有更大分子间相互作用的系统通过PI堆叠或共价链接来实现。最终的材料将是在整个全球温度范围内具有有利电导率的第一个实心电解质。阴离子大小和基质亲和力的变化将用于优化矩阵中阳离子的选择性传导。还将探索使用钠离子代替锂离子,以设计用于钠电池的电解质。这些材料将被制成用于设备测试的膜中。关于使用多面性寡聚硅氧烷聚乙烯乙二醇(POSS-PEG)作为粘合剂的初步结果是有希望的,并提供了与温度无关行为的共晶之间的连接,而无需影响温度独立行为。它们表现出在室温下略优于纯聚合物电解质,并且在低温下超过了优势。这样的材料有可能导致设计在全球温度所有范围内工作的固态电池,并且由于缺乏易燃电解质而提高了安全性。BOODER的影响:能源可再生能源是美国经济越来越重要的领域。电池将在储能中继续发挥重要作用。拟议的工作可能会导致新材料改善电池的安全性和功能,从而改善美国能源独立性。更重要的是,该项目将培训年轻的科学家,以满足市场在离子传导领域的需求不断增长的,这与在这个不断增长的经济部门中的众多应用相关。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Zdilla其他文献

Michael Zdilla的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Zdilla', 18)}}的其他基金

MRI: Acquisition of Crystallographic Equipment and Excellence in Crystallographic Science and Education at Temple University and the Surrounding Community
MRI:天普大学及周边社区晶体学设备的采购和卓越的晶体学科学与教育
  • 批准号:
    2215854
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Moldable, self-healing, highly conductive organic co-crystalline solid electrolytes for safer lithium ion batteries
可成型、自修复、高导电性有机共晶固体电解质,用于更安全的锂离子电池
  • 批准号:
    2138432
  • 财政年份:
    2022
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
Conformationally-flexible, reactive manganese clusters to probe possible mechanisms of oxygen-oxygen bond formation in photosystem II
构象灵活的反应性锰簇探索光系统 II 中氧-氧键形成的可能机制
  • 批准号:
    1800105
  • 财政年份:
    2018
  • 资助金额:
    $ 55万
  • 项目类别:
    Continuing Grant
CAREER / SusChEM: Bio-inspired synthesis of conformationally flexible analogues of the biological oxygen evolving complex: A redesigned approach to manganese cluster molecules
职业 / SusChEM:生物放氧复合物构象灵活类似物的仿生合成:锰簇分子的重新设计方法
  • 批准号:
    1254545
  • 财政年份:
    2013
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant

相似国自然基金

热核复杂有机分子的大样本观测研究
  • 批准号:
    12303028
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于碳源互作研究小分子有机酸强化厌氧脱卤菌群还原脱卤的机制
  • 批准号:
    42307046
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
重氮化合物在有机合成以及高分子合成中的新应用
  • 批准号:
    22371008
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
火山活动的分子地球化学响应与有机质富集机制——以上寺剖面大隆组为例
  • 批准号:
    42302189
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
华南埃迪卡拉化石超微结构中有机分子的光谱特征
  • 批准号:
    42372229
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000106/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
ORIGINS - Organic molecular generation of protocells on iron minerals
起源 - 在铁矿物上有机分子生成原始细胞
  • 批准号:
    NE/Z000041/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
MICRO-CYCLE: Unravelling the role of microbial genomic traits in organic matter cycling and molecular composition along the river continuum
微循环:揭示微生物基因组特征在河流连续体有机物循环和分子组成中的作用
  • 批准号:
    NE/Z000173/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Research Grant
Collaborative Research: Catholyte Molecular Design For Non-aqueous Mg-organic Hybrid Redox Flow Batteries
合作研究:非水镁有机混合氧化还原液流电池的阴极电解液分子设计
  • 批准号:
    2419938
  • 财政年份:
    2024
  • 资助金额:
    $ 55万
  • 项目类别:
    Standard Grant
Layered molecular two-dimensional materials based on metal-organic polyhedra
基于金属有机多面体的层状分子二维材料
  • 批准号:
    22KF0219
  • 财政年份:
    2023
  • 资助金额:
    $ 55万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了