Geometrically exact methods for fluid-structure interaction
流固耦合的几何精确方法
基本信息
- 批准号:249132206
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:德国
- 项目类别:Research Grants
- 财政年份:2014
- 资助国家:德国
- 起止时间:2013-12-31 至 2019-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The methods developed in the proposed project will allow the solution of a class of fluid-structure-interaction problems via practical partitioned methods, which could up to now be solved only with monolithic methods. This can be achieved by guaranteeing that both the fluid and structure sides use an identical boundary description. For this purpose, methods based on Non-Uniform Rational B-Splines (NURBS) are used on both fluid and structural sides and coupled at the interface. Beyond that aspect, the separation of solvers for the fluid and the structure remains possible. Using partitioned approaches allows the integration of existing and specialized single-field solvers into an overall solution system. Unfortunately, different surface discretization in presents a challenge in such solvers. The necessary methods to project physical variables from one side to the other reduce the stability of partitioned approaches compared to more elaborate monolithic approaches. So far this problem has not been addressed satisfactorily. By applying approaches based on NURBS, an exact geometry of the wetted surface on both sides can be guaranteed and the transfer errors can be reduced or eliminated. The proposed concept is inspired by the isogeometric analysis (IGA), which has been gaining popularity in the structural analysis in recent years. Performing the numerical load analysis directly on the geometric formulation used during the design process is the main advantage of this method, and it is used in the suggested project on the structural side. Because the generation of suitable volume discretizations has been achieved in IGA only for relatively simple geometries, its application in fluid mechanics is limited. However, extending conventional methods with a NURBS-based boundary formulation can preserve many advantages of the method. This concept is followed in the NURBS-enhanced Finite-Element Method (NEFEM), which will be used in the proposed project on the fluid side. The project involves the development of the essential transfer methods. One intermediate step is the extension of existing methods while using a conventional method on the other, fluid or structural, side. The advantages of the developed methodology will be demonstrated on academic problems and on real-world applications. Advances in robustness and accuracy are expected by the incorporation of the innovative single-field solvers and by the reduction of errors in the transfer methods at the interface. In addition to the method development, a workshop is planned to support the scientific communication about current state of the art in the field of fluid-structure interaction. During this workshop, groundbreaking methods will be presented and discussed by international experts; the workshop will also provide a platform for young academics.
该项目中开发的方法将允许通过实用的分区方法来解决一类流体-结构相互作用问题,而迄今为止这些问题只能用整体方法来解决。这可以通过保证流体侧和结构侧使用相同的边界描述来实现。为此,在流体侧和结构侧均使用基于非均匀有理 B 样条 (NURBS) 的方法,并在界面处进行耦合。除此之外,流体和结构的求解器分离仍然是可能的。使用分区方法可以将现有的和专用的单场求解器集成到整体解决方案系统中。不幸的是,不同的表面离散化对此类求解器提出了挑战。与更复杂的整体方法相比,将物理变量从一侧投影到另一侧的必要方法降低了分区方法的稳定性。到目前为止,这个问题还没有得到令人满意的解决。通过应用基于 NURBS 的方法,可以保证两侧润湿表面的精确几何形状,并可以减少或消除传递误差。提出的概念受到近年来在结构分析中越来越流行的等几何分析(IGA)的启发。直接对设计过程中使用的几何公式进行数值载荷分析是该方法的主要优点,并且在结构方面的建议项目中使用。由于 IGA 只能针对相对简单的几何形状生成合适的体积离散化,因此其在流体力学中的应用受到限制。然而,使用基于 NURBS 的边界公式扩展传统方法可以保留该方法的许多优点。 NURBS 增强有限元法 (NEFEM) 遵循了这一概念,该方法将用于流体侧的拟议项目。该项目涉及基本传输方法的开发。一个中间步骤是扩展现有方法,同时在流体或结构的另一侧使用传统方法。所开发方法的优势将在学术问题和实际应用中得到证明。通过结合创新的单场求解器以及减少接口传输方法中的误差,预计鲁棒性和准确性将得到提高。除了方法开发之外,还计划举办一次研讨会,以支持有关流固耦合领域当前最新技术水平的科学交流。在本次研讨会上,国际专家将介绍和讨论突破性的方法;该研讨会还将为年轻学者提供一个平台。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Spline-based methods for fluid-structure interaction
基于样条的流固耦合方法
- DOI:10.18154/rwth-2018-223770
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Hosters
- 通讯作者:Hosters
Fluid–structure interaction with NURBS-based coupling
- DOI:10.1016/j.cma.2018.01.003
- 发表时间:2018-04
- 期刊:
- 影响因子:7.2
- 作者:N. Hosters;Jan Helmig;Atanas Stavrev;M. Behr;S. Elgeti
- 通讯作者:N. Hosters;Jan Helmig;Atanas Stavrev;M. Behr;S. Elgeti
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Professor Marek Behr, Ph.D.其他文献
Professor Marek Behr, Ph.D.的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Professor Marek Behr, Ph.D.', 18)}}的其他基金
Drug-eluting coronary stents in stenosed arteries: medical investigation and computational modelling
狭窄动脉中的药物洗脱冠状动脉支架:医学研究和计算模型
- 批准号:
395712048 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Research Grants
Computation of Die Swell behind a Complex Profile Extrusion Die Using a Stabilized Finite Element Method for Various Thermoplastic Polymers
使用稳定有限元方法计算各种热塑性聚合物复杂轮廓挤出模具后面的模具膨胀
- 批准号:
184122738 - 财政年份:2011
- 资助金额:
-- - 项目类别:
Research Grants
Mechanistic modeling of restructuring behavior of colloidal aggregates in shear flows
剪切流中胶体聚集体重组行为的机理建模
- 批准号:
43393642 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Priority Programmes
Robust Shape Optimization for Artifical Blood Pumps: Hematological Design, Large-scale Transient Simulations, and Influence of Constitutive Models, Sensitivity Analysis
人工血泵的稳健形状优化:血液学设计、大规模瞬态模拟以及本构模型的影响、敏感性分析
- 批准号:
25250102 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Priority Programmes
In-stent restenosis in coronary arteries - in silico investigations based on patient-specific data and meta modeling
冠状动脉支架内再狭窄 - 基于患者特定数据和元模型的计算机研究
- 批准号:
465213526 - 财政年份:
- 资助金额:
-- - 项目类别:
Priority Programmes
相似国自然基金
多聚泛素的精确分子印迹方法研究
- 批准号:22374002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于精确计算方法研究J/ψ介子的光致产生过程及其Sivers效应
- 批准号:12305092
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于广义特征值方法的随机时滞系统精确控制研究
- 批准号:62373178
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于快速极小时间溯祖策略的群体历史推断新方法及人类群体历史精确分析的研究
- 批准号:32300504
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The Exposome in Rheumatoid Arthritis and Systemic Lupus Erythematosus: EXACT Network Planning
类风湿关节炎和系统性红斑狼疮的暴露组:精确的网络规划
- 批准号:
10869439 - 财政年份:2023
- 资助金额:
-- - 项目类别:
正確な理論合成化学の基礎となるシュレーディンガーレベルの量子化学の構築
构建薛定谔级量子化学作为精确理论合成化学的基础
- 批准号:
22H02045 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Exact and approximate solution methods for batch scheduling problems
批量调度问题的精确和近似求解方法
- 批准号:
RGPIN-2019-05691 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Discovery Grants Program - Individual
Molecules in Classical and Quantized Fields: Developing Time-dependent Density Functional and Exact Factorization Methods for Electrons, Ions, and Photons
经典和量子化领域中的分子:开发电子、离子和光子的时间相关密度泛函和精确分解方法
- 批准号:
2154829 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Standard Grant
Exact WKB analysis for differential equations satisfied by oscillatory integrals
振荡积分满足的微分方程的精确 WKB 分析
- 批准号:
21K03300 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)