Collaborative Research: SHF: Medium: Responsive Parallelism for Interactive Applications: Theory and Practice

协作研究:SHF:媒介:交互式应用程序的响应式并行性:理论与实践

基本信息

  • 批准号:
    2107280
  • 负责人:
  • 金额:
    $ 49.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

The hardware advances of recent years have brought multicore chips and parallel computing to the mainstream. As a result, today, parallelism is not found just in the traditional scientific applications that have dominated research and development in parallel computing in past decades. We must now consider parallelism in interactive applications which are characterized by frequent interactions with users or other software systems and therefore must be responsive. This project’s aim is to develop a practical approach to interactive parallel applications. The project’s novelty, in addition to focusing on this under-studied intersection of parallelism and interaction, is that it follows an end-to-end methodology that brings together many areas of computer science and bridges theory with practice. The project has the potential to impact the design of several application areas that require large-scale interactive applications, including web services, desktop clients for CAD/CAM, games, and a variety of mobile applications. This research’s end-to-end goals require advances in type systems, programming languages, scheduling theory, and runtime systems. The research team will develop a calculus for modeling interactive parallel applications at a high level of abstraction. This calculus will equip a fully general formal programming language based on Church's Lambda Calculus with a cost semantics, making it possible 1) to express interactive parallel applications and 2) to reason about the throughput and responsiveness of the programs. A type system will ensure the absence of thorny bugs such as priority inversions that can prevent establishing responsiveness guarantees. The investigators will prove that this calculus is realizable by developing scheduling algorithms that can faithfully match the cost semantics so as to guarantee the desired performance criteria. On the practical side, the project team will extend Cilk, a C-based parallel programming language, to support interactive parallel applications. This will require developing a run-time system that faithfully implements the scheduling algorithms and optimizations that ensure practical performance. The educational component of this project, which involves teaching undergraduates parallel algorithms, will create ample opportunities to test the practical effectiveness of the proposed approach.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
近年来硬件的进步使多核芯片和并行计算成为主流,因此,今天,并行性不仅仅存在于过去几十年主导并行计算研究和开发的传统科学应用中。交互式应用程序中的并行性其特点是与用户或其他软件系统频繁交互,因此必须具有响应能力,该项目的目的是开发一种实用的交互式并行应用程序方法,此外还重点关注这一尚未充分研究的交叉点。并行性和交互性,是它遵循一种端到端的方法,将计算机科学的许多领域结合在一起,并将理论与实践联系起来。该项目有可能影响需要大规模交互式应用程序的多个应用程序领域的设计,包括网络服务、桌面。该研究的端到端目标需要类型系统、编程语言、调度理论和运行时系统的进步。研究团队将开发一种用于建模交互式并行的微积分。高度抽象的应用程序。将配备一种基于 Church 的 Lambda 演算的完全通用的形式化编程语言,并具有成本语义,从而可以 1) 表达交互式并行应用程序,2) 推理程序的吞吐量和响应能力。类型系统将确保不存在研究人员将证明这种计算可以通过开发能够忠实匹配成本语义的调度算法来实现,从而保证实际的性能标准。另一方面,项目团队将扩展基于 C 的并行编程语言 Cilk,以支持交互式并行应用程序,这将需要开发一个运行时系统,忠实地实现调度算法和优化,以确保实际性能。该项目涉及本科生并行算法教学,将为测试所提出方法的实际有效性创造充足的机会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An Efficient Scheduler for Task-Parallel Interactive Applications
任务并行交互式应用程序的高效调度程序
Automatic HBM Management: Models and Algorithms
自动 HBM 管理:模型和算法
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kunal Agrawal其他文献

Orchestrating safe streaming computations with precise control
通过精确控制编排安全流计算
The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems
在安全关键系统中安全有效地使用低保证率预测
Number : WUCSE-2013-25 2013 Parallel Real-Time Scheduling of DAGs
编号:WUCSE-2013-25 2013 DAG 并行实时调度
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abusayeed Saifullah;D. Ferry;Jing Li;Kunal Agrawal;Chenyang Lu
  • 通讯作者:
    Chenyang Lu
The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems
在安全关键系统中安全有效地使用低保证率预测
The Safe and Effective Use of Low-Assurance Predictions in Safety-Critical Systems
在安全关键系统中安全有效地使用低保证率预测

Kunal Agrawal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kunal Agrawal', 18)}}的其他基金

Collaborative Research: PPoSS: Large: A Full-Stack Architecture for Sparse Computation
协作研究:PPoSS:大型:稀疏计算的全栈架构
  • 批准号:
    2216971
  • 财政年份:
    2022
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: AF: Medium: Adventures in Flatland: Algorithms for Modern Memories
合作研究:AF:媒介:平地历险记:现代记忆算法
  • 批准号:
    2106699
  • 财政年份:
    2021
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
SPX: Collaborative Research: Eat your Wheaties: Multi-Grain Compilers for Parallel Builds at Every Scale
SPX:协作研究:吃你的小麦:用于各种规模并行构建的多粒度编译器
  • 批准号:
    1725647
  • 财政年份:
    2017
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
XPS: FULL: FP: Collaborative Research: Taming parallelism: optimally exploiting high-throughput parallel architectures
XPS:完整:FP:协作研究:驯服并行性:最佳地利用高吞吐量并行架构
  • 批准号:
    1439062
  • 财政年份:
    2014
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
XPS: FP: Real-Time Scheduling of Parallel Tasks
XPS:FP:并行任务的实时调度
  • 批准号:
    1337218
  • 财政年份:
    2013
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
CAREER: Provably Good Concurrency Platforms for Streaming Applications
职业:经过验证的流应用程序良好并发平台
  • 批准号:
    1150036
  • 财政年份:
    2012
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Continuing Grant
AF: SMALL: Collaborative Research: Data Structures for Parallel Algorithms
AF:小:协作研究:并行算法的数据结构
  • 批准号:
    1218017
  • 财政年份:
    2012
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant

相似国自然基金

面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
  • 批准号:
    12302200
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
  • 批准号:
    82302939
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
  • 批准号:
    52377175
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
  • 批准号:
    62301375
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
  • 批准号:
    62265011
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402806
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
  • 批准号:
    2402805
  • 财政年份:
    2024
  • 资助金额:
    $ 49.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了