Collaborative Research: SHF: Medium: Spatial Multi-Tenant Neural Acceleration for Next Generation Datacenters
合作研究:SHF:中:下一代数据中心的空间多租户神经加速
基本信息
- 批准号:2107244
- 负责人:
- 金额:$ 80万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Recent advances in Artificial Intelligence are transforming many aspects of human life such as e-commerce, medicine, transportation, and beyond. Datacenter networks are the foundation of modern online services. As the world is recovering from COVID-19, society is witnessing an increased reliance on online services and machine learning. This explosive growth has created an enormous demand for computation resources in datacenters. However, today's approaches are extremely costly and energy-inefficient. In fact, if the current systems continue to grow, datacenters will account for 14% of the total worldwide carbon emissions by 2040. This project aims to address this challenge using advanced resource-sharing techniques tailored for machine learning workloads. In particular, this award enables the network operators to maximize the utilization of network resources while achieving high quality of service experience for the users.This work sets out to explore the timely requirement of multi-tenancy for machine-learning acceleration through a new paradigm called dynamic architecture fission. There is a significant degree of underutilization when it comes to machine-learning accelerators that stem from the rigidity of architectures and their single-tenant nature. As such, there is an imminent need to rethink custom accelerator design and adoption in datacenters where cost-effective resource utilization replaces unnecessary resource cloning. Similar to the case of microprocessors, multi-tenant acceleration can open up a pathway that remedies resource replication and underutilization. Nonetheless, multi-tenancy has not been a primary factor in the design of machine-learning accelerators because of the race for higher speed, the recency of accelerator adoption in datacenters, and challenges associated with accelerator multi-tenancy. To that end, this project aims to explore spatial multi-tenancy as a new dimension in accelerator design to tackle resource underutilization in datacenters and bring forth cost-effective deployment of machine learning accelerators. This new dimension will significantly help reduce the slope of over-provisioning in datacenters to pave the way towards greener cloud computing. The proposed spatial multi-tenant acceleration of deep learning at scale can substantially improve the cost-effectiveness of next-generation datacenters. Given the increasing demand for deep-learning services and the carbon footprint of training and inference, this proposal will have a significant socioeconomic and environmental impact. The researchers are also strongly committed to broadening participation in computing and have comprehensive plans to engage the underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能的最新进展正在改变人类生活的许多方面,例如电子商务、医疗、交通等。数据中心网络是现代在线服务的基础。随着世界从新冠肺炎 (COVID-19) 疫情中恢复,社会对在线服务和机器学习的依赖日益增加。这种爆炸式增长对数据中心的计算资源产生了巨大的需求。然而,当今的方法成本极高且能源效率低下。事实上,如果当前系统继续增长,到 2040 年,数据中心的碳排放量将占全球碳排放总量的 14%。该项目旨在使用针对机器学习工作负载量身定制的先进资源共享技术来应对这一挑战。特别是,该奖项使网络运营商能够最大限度地利用网络资源,同时为用户提供高质量的服务体验。这项工作旨在通过一种名为“机器学习加速”的新范式探索多租户对机器学习加速的及时需求。动态架构裂变。由于架构的僵化及其单租户性质,机器学习加速器的利用率严重不足。因此,迫切需要重新考虑数据中心的定制加速器设计和采用,以经济高效的资源利用取代不必要的资源克隆。与微处理器的情况类似,多租户加速可以开辟一条补救资源复制和利用率不足的途径。尽管如此,由于对更高速度的争夺、数据中心采用加速器的新近以及与加速器多租户相关的挑战,多租户并不是机器学习加速器设计中的主要因素。为此,该项目旨在探索空间多租户作为加速器设计的新维度,以解决数据中心资源利用不足的问题,并实现机器学习加速器的经济高效部署。这一新维度将显着有助于降低数据中心过度配置的斜率,为更绿色的云计算铺平道路。所提出的大规模深度学习空间多租户加速可以显着提高下一代数据中心的成本效益。鉴于对深度学习服务的需求以及培训和推理的碳足迹不断增长,该提案将产生重大的社会经济和环境影响。研究人员还坚定地致力于扩大对计算的参与,并制定了全面的计划来吸引代表性不足的群体。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GraphIt to CUDA Compiler in 2021 LOC: A Case for High-Performance DSL Implementation via Staging with BuilDSL
2021 年 LOC 中的 GraphIt 到 CUDA 编译器:通过 BuilDSL 分段实现高性能 DSL 的案例
- DOI:10.1109/cgo53902.2022.9741280
- 发表时间:2022-04-02
- 期刊:
- 影响因子:0
- 作者:Ajay Brahmakshatriya;S. Amarasinghe
- 通讯作者:S. Amarasinghe
Cerberus: The Power of Choices in Datacenter Topology Design - A Throughput Perspective
Cerberus:数据中心拓扑设计中选择的力量 - 吞吐量角度
- DOI:10.1145/3491050
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Griner, Chen;Zerwas, Johannes;Blenk, Andreas;Ghobadi, Manya;Schmid, Stefan;Avin, Chen
- 通讯作者:Avin, Chen
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manya Ghobadi其他文献
Manya Ghobadi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Manya Ghobadi', 18)}}的其他基金
Collaborative Research: CNS Core: Medium: A Stateful Switch Architecture for In-Network Compute
合作研究:CNS Core:Medium:用于网内计算的有状态交换机架构
- 批准号:
2211382 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
CAREER: Large-scale Dynamic Reconfigurable Networks
职业:大规模动态可重构网络
- 批准号:
2144766 - 财政年份:2022
- 资助金额:
$ 80万 - 项目类别:
Continuing Grant
ASCENT: Collaborative Research: Scaling Distributed AI Systems based on Universal Optical I/O
ASCENT:协作研究:基于通用光学 I/O 扩展分布式人工智能系统
- 批准号:
2023468 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: A Principled Framework for Workload Distribution Techniques in Large-Scale Networks
合作研究:CNS 核心:小型:大规模网络中工作负载分配技术的原则框架
- 批准号:
2008624 - 财政年份:2020
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
相似国自然基金
面向5G通信的超高频FBAR耗散机理和耗散稳定性研究
- 批准号:12302200
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
宽运行范围超高频逆变系统架构拓扑与调控策略研究
- 批准号:52377175
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高频同步整流DC-DC变换器效率优化关键技术研究
- 批准号:62301375
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衔接蛋白SHF负向调控胶质母细胞瘤中EGFR/EGFRvIII再循环和稳定性的功能及机制研究
- 批准号:82302939
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
超高频光声频谱渐进式调制下的光声显微成像轴向分辨率提升研究
- 批准号:62265011
- 批准年份:2022
- 资助金额:34 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
- 批准号:
2402804 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
- 批准号:
2331301 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Enabling GPU Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的 GPU 性能仿真
- 批准号:
2402806 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
- 批准号:
2412357 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant
Collaborative Research: SHF: Medium: Toward Understandability and Interpretability for Neural Language Models of Source Code
合作研究:SHF:媒介:实现源代码神经语言模型的可理解性和可解释性
- 批准号:
2423813 - 财政年份:2024
- 资助金额:
$ 80万 - 项目类别:
Standard Grant