Collaborative Research: Towards a Theoretic Foundation for Optimal Deep Graph Learning
协作研究:为最优深度图学习奠定理论基础
基本信息
- 批准号:2134081
- 负责人:
- 金额:$ 35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Graph learning has become the cornerstone in numerous real-world applications, such as social media mining, brain connectivity analysis, computational epidemiology and financial fraud detection. Graph neural networks (GNNs for short) represent an important and emerging family of deep graph learning models. By producing a vector representation of graph elements, GNNs have largely streamlined a multitude of graph learning problems. In the vast majority of the existing works, they require a given graph, including its topology, the associated attribute information and labels for (semi-)supervised learning tasks, as part of the input of the corresponding learning model. Despite tremendous progress being made, a theoretical foundation of optimal deep graph learning is still missing, a gap that this project aims to fulfill. The outcomes of this project have broader impacts on education and society. The results of this project enrich the curriculum as well as summer outreach programs at participating institutions, and are further disseminated to the community through a variety of formats to create synergies and advance understandings of different disciplines. This project benefits a variety of high-impact graph learning based applications, including recommendation, power grid, neural science, team science and management, and intelligent transportation systems.This project examines the fundamental role of the input data, including graph topology, attributes and optional labels, in graph neural networks. There are three research thrusts in this project. The first thrust seeks to understand how sensitive the GNNs model is with respect to the input graph; how to quantify the uncertainty of the GNNs model; and how that impacts the generalization performance of the GNNs model. The second thrust develops algorithms to optimize the initially provided graph so as to maximally boost the generalization performance of the given GNNs model. The third thrust develops active learning methods based on deep reinforcement learning with entropy regularization to optimally obtain the additional labels to further improve the GNNs model. This project investigates new theoretic foundations in terms of the sensitivity, the uncertainty and the generalization performance of graph neural networks. It develops new algorithms for learning optimal graphs and active GNNs with better efficacy whose fundamental limits, including sample complexity, generalization error bound, optimality and convergence rate, are well understood.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
图形学习已成为许多现实世界应用中的基石,例如社交媒体采矿,大脑连通性分析,计算流行病学和财务欺诈检测。图形神经网络(简称GNNS)代表了深度图学习模型的重要且新兴的家族。通过产生图形元素的向量表示,GNN在很大程度上简化了许多图形学习问题。在绝大多数现有作品中,它们需要给定的图,包括其拓扑,相关的属性信息和(半)监督学习任务的标签,这是相应学习模型的输入的一部分。尽管取得了巨大的进步,但仍缺少最佳深图学习的理论基础,该项目旨在实现这一差距。该项目的结果对教育和社会产生了更大的影响。该项目的结果丰富了课程以及参与机构的夏季推广计划,并通过各种格式进一步传播到社区,以创造协同作用并提高对不同学科的理解。该项目受益于各种基于图形学习的应用程序,包括建议,电网,神经科学,团队科学和管理以及智能运输系统。该项目在图神经网络中研究了输入数据的基本作用,包括图形拓扑,属性和可选标签。该项目中有三个研究作用。第一个推力试图了解GNNS模型对输入图的敏感程度。如何量化GNNS模型的不确定性;以及这如何影响GNNS模型的概括性能。第二个推力开发了算法来优化最初提供的图形,以最大程度地提高给定GNNS模型的概括性能。第三个推力基于熵正则化的深入增强学习开发了主动学习方法,以最佳获取其他标签,以进一步改善GNNS模型。该项目根据图形神经网络的灵敏度,不确定性和概括性能研究了新的理论基础。它开发了新的算法来学习最佳图形和具有更好效率的主动GNN,其基本限制(包括样本复杂性,概括错误限制,最佳和融合率)已充分理解。该奖项反映了NSF的法定任务,并通过基金会的知识优点和广泛的影响来评估NSF的法定任务,并被认为是值得的支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Batch Active Learning with Graph Neural Networks via Multi-Agent Deep Reinforcement Learning
- DOI:10.1609/aaai.v36i8.20897
- 发表时间:2022-06
- 期刊:
- 影响因子:0
- 作者:Yuheng Zhang;Hanghang Tong;Yinglong Xia;Yan Zhu-;Yuejie Chi;Lei Ying
- 通讯作者:Yuheng Zhang;Hanghang Tong;Yinglong Xia;Yan Zhu-;Yuejie Chi;Lei Ying
Active Heterogeneous Graph Neural Networks with Per-step Meta-Q-Learning
- DOI:10.1109/icdm54844.2022.00176
- 发表时间:2022-11
- 期刊:
- 影响因子:0
- 作者:Yuheng Zhang;Yinglong Xia;Yan Zhu;Yuejie Chi;Lei Ying;H. Tong
- 通讯作者:Yuheng Zhang;Yinglong Xia;Yan Zhu;Yuejie Chi;Lei Ying;H. Tong
Provably Efficient Model-Free Algorithms for Non-stationary CMDPs
- DOI:10.48550/arxiv.2303.05733
- 发表时间:2023-03
- 期刊:
- 影响因子:0
- 作者:Honghao Wei;A. Ghosh;N. Shroff;Lei Ying;Xingyu Zhou
- 通讯作者:Honghao Wei;A. Ghosh;N. Shroff;Lei Ying;Xingyu Zhou
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Ying其他文献
Improving the Electroluminescent Performance of Blue Light-Emitting Polymers by Side-Chain Modification
通过侧链修饰提高蓝光聚合物的电致发光性能
- DOI:
10.1021/acsami.9b21652 - 发表时间:
2020 - 期刊:
- 影响因子:9.5
- 作者:
Feng Peng;Wenkai Zhong;Zhiming Zhong;Ting Guo;Lei Ying - 通讯作者:
Lei Ying
Erythromycin relaxes BALB/c mouse airway smooth muscle
红霉素松弛 BALB/c 小鼠气道平滑肌
- DOI:
10.1016/j.lfs.2019.02.009 - 发表时间:
2019-03 - 期刊:
- 影响因子:6.1
- 作者:
Cai Yan;Lei Ying;Chen Jingguo;Cao Lei;Yang Xudong;Zhang Kanghuai;Cao Yongxiao - 通讯作者:
Cao Yongxiao
YY1 deficiency in beta-cells leads to mitochondrial dysfunction and diabetes in mice
β细胞中的YY1缺陷导致小鼠线粒体功能障碍和糖尿病
- DOI:
10.1016/j.metabol.2020.154353 - 发表时间:
2020 - 期刊:
- 影响因子:9.8
- 作者:
Song Dalong;Yang Qi;Jiang Xiuli;Shan Aijing;Nan Jingminjie;Lei Ying;Ji He;Di Wei;Yang Tianxiao;Wang Tiange;Wang Weiqing;Ning Guang;Cao Yanan - 通讯作者:
Cao Yanan
Hybrid density functional studies of C-anion-doped anatase TiO2
C-阴离子掺杂锐钛矿型 TiO2 的杂化密度泛函研究
- DOI:
10.1016/j.cplett.2016.02.047 - 发表时间:
2016 - 期刊:
- 影响因子:2.8
- 作者:
Shi Jianhao;Li Xuechao;Wan Rundong;Leng Chongyan;Lei Ying - 通讯作者:
Lei Ying
Data fusion based EKF-UI for real-time simultaneous identification of structural systems and unknown external inputs
基于数据融合的 EKF-UI,用于结构系统和未知外部输入的实时同步识别
- DOI:
10.1016/j.measurement.2016.02.002 - 发表时间:
2016-06 - 期刊:
- 影响因子:5.6
- 作者:
Liu Lijun;Su Ying;Zhu Jiajia;Lei Ying - 通讯作者:
Lei Ying
Lei Ying的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Ying', 18)}}的其他基金
Collaborative Research: III: Small: Reconstruction of Diffusion History in Cyber and Human Networks with Applications in Epidemiology and Cybersecurity
合作研究:III:小:重建网络和人类网络中的扩散历史及其在流行病学和网络安全中的应用
- 批准号:
2324769 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: SLES: Safe Distributional-Reinforcement Learning-Enabled Systems: Theories, Algorithms, and Experiments
协作研究:SLES:安全的分布式强化学习系统:理论、算法和实验
- 批准号:
2331780 - 财政年份:2023
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Nonasymptotic Analysis for Stochastic Networks and Systems: Foundations and Applications
合作研究:CIF:小型:随机网络和系统的非渐近分析:基础和应用
- 批准号:
2207548 - 财政年份:2022
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Towards Adaptive and Efficient Wireless Computing Networks
NeTS:小型:协作研究:迈向自适应且高效的无线计算网络
- 批准号:
2002608 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
III: Small: Towards a Theoretical Foundation for Diffusion Source Localization
III:小:迈向扩散源定位的理论基础
- 批准号:
2003924 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Leveraging Randomization and Human Behavior for Efficient Large-Scale Distributed Spectrum Access
SpecEES:协作研究:利用随机化和人类行为实现高效的大规模分布式频谱访问
- 批准号:
2001687 - 财政年份:2019
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
NeTS: Small: Collaborative Research: Towards Adaptive and Efficient Wireless Computing Networks
NeTS:小型:协作研究:迈向自适应且高效的无线计算网络
- 批准号:
1813392 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
SpecEES: Collaborative Research: Leveraging Randomization and Human Behavior for Efficient Large-Scale Distributed Spectrum Access
SpecEES:协作研究:利用随机化和人类行为实现高效的大规模分布式频谱访问
- 批准号:
1824393 - 财政年份:2018
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
III: Small: Towards a Theoretical Foundation for Diffusion Source Localization
III:小:迈向扩散源定位的理论基础
- 批准号:
1715385 - 财政年份:2017
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Resource Allocation for Time-Critical Communications in Wireless Networks
合作研究:无线网络中时间关键型通信的资源分配
- 批准号:
1609202 - 财政年份:2016
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
相似国自然基金
SHP2调控Treg向Th2-like Treg的可塑性转化在变应性鼻炎中的作用与机制研究
- 批准号:82301281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EAST高极向比压运行模式下芯部与边界兼容机制的数值模拟研究
- 批准号:12375228
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
CXCR5依赖的边缘区B细胞向滤泡树突状细胞呈递外泌体引发心脏移植排斥的研究
- 批准号:82300460
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Dlx2通过调控Tspan13影响上颌突间充质干细胞骨向分化的机制研究
- 批准号:82301008
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
糖尿病心肌病心室重构的新机制:高糖诱导巨噬细胞脂质代谢重编程通过活性脂质MA调控心脏成纤维细胞向肌成纤维细胞转分化的机制研究
- 批准号:82300404
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349935 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349934 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Frameworks: MobilityNet: A Trustworthy CI Emulation Tool for Cross-Domain Mobility Data Generation and Sharing towards Multidisciplinary Innovations
协作研究:框架:MobilityNet:用于跨域移动数据生成和共享以实现多学科创新的值得信赖的 CI 仿真工具
- 批准号:
2411152 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant
Collaborative Research: Maritime to Inland Transitions Towards ENvironments for Convection Initiation (MITTEN CI)
合作研究:海洋到内陆向对流引发环境的转变(MITTEN CI)
- 批准号:
2349936 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Continuing Grant
Collaborative Research: Multiple Team Membership (MTM) through Technology: A path towards individual and team wellbeing?
协作研究:通过技术实现多重团队成员 (MTM):通往个人和团队福祉的道路?
- 批准号:
2345652 - 财政年份:2024
- 资助金额:
$ 35万 - 项目类别:
Standard Grant