The Geometry of Measures and Analytic Properties of Associated Operators

测度几何和关联算子的解析性质

基本信息

  • 批准号:
    2103534
  • 负责人:
  • 金额:
    $ 9.39万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-15 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

This project concerns a study of the some of the mathematics behind two basic physical questions. The first question considered is to what extent can the geometry of a body be determined from information about a force field associated to the body (for instance its gravitational field)? Such inverse problems in potential theory have a rich history, but the mathematical tools needed to answer this question are currently underdeveloped. The investigation will focus especially on what can be said if one only knows that the field has bounded magnitude, which is of particular interest in applications. A second question to be explored is how, and to what degree of accuracy, can one determine the asymptotic (or long term) behavior of a random function that evolves with time, based on certain empirical measurements? More specifically, the principal investigator proposes to research several questions concerning the relationship between the geometrical properties of a measure and the regularity properties of an associated operator. The primary question of interest is the following: What can be deduced about a measure from the knowledge that singular integral operator associated to it has good regularity properties? Under these circumstances, can the measure have a fractal structure, or must its support be contained in (a countable number of) Lipschitz sub-manifolds of appropriate dimension? Attempts to solve this problem has led to theory which has found recent applications in the calculus of variations, the study of free boundary problems, and the geometry of harmonic measure. The principal investigator intends to further develop tools that serve as a bridge from the analytic condition on the singular integral operator to the geometric structure of the measure. A second topic of research concerns understanding the long-term behavior of a stationary Gaussian process given information about its spectral measure, building upon recent work involving the principal investigator.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目涉及两个基本物理问题背后的一些数学研究。 首先考虑的问题是,在多大程度上可以根据与物体相关的力场(例如其引力场)信息来确定物体的几何形状? 势论中的此类反问题有着悠久的历史,但回答这个问题所需的数学工具目前还不发达。 这项研究将特别关注如果人们只知道该场具有有限大小的话可以说些什么,这在应用中特别令人感兴趣。 要探讨的第二个问题是,如何基于某些经验测量来确定随时间演化的随机函数的渐近(或长期)行为以及精确度如何?更具体地说,主要研究者建议研究有关测度的几何特性与相关算子的正则性特性之间关系的几个问题。主要感兴趣的问题如下:根据与测量相关的奇异积分算子具有良好的正则性性质的知识,可以推断出什么关于测量的信息? 在这种情况下,测度是否可以具有分形结构,或者它的支持必须包含在(可数个)适当维数的 Lipschitz 子流形中?解决这个问题的尝试催生了一些理论,该理论最近在变分法、自由边界问题的研究以及调和测度的几何学中得到了应用。 首席研究员打算进一步开发工具,作为从奇异积分算子的解析条件到测度的几何结构的桥梁。研究的第二个主题涉及在首席研究员最近的工作基础上,在给定光谱测量信息的情况下了解平稳高斯过程的长期行为。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Uncertainty Principles Associated to Sets Satisfying the Geometric Control Condition
满足几何控制条件的集合的不确定性原理
  • DOI:
    10.1007/s12220-021-00830-x
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Green, Walton;Jaye, Benjamin;Mitkovski, Mishko
  • 通讯作者:
    Mitkovski, Mishko
A sufficient condition for mobile sampling in terms of surface density
表面密度方面移动采样的充分条件
Quantitative Uniqueness Properties for L 2 Functions with Fast Decaying, or Sparsely Supported, Fourier Transform
具有快速衰减或稀疏支持的傅立叶变换的 L 2 函数的定量唯一性属性
The Huovinen transform and rectifiability of measures
Huovinen 变换和测度的可修正性
  • DOI:
    10.1016/j.aim.2022.108297
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Jaye, Benjamin;Merchán, Tomás
  • 通讯作者:
    Merchán, Tomás
A proof of Carleson's 𝜀^2-conjecture
卡尔森 ?^2 猜想的证明
  • DOI:
    10.4007/annals.2021.194.1.2
  • 发表时间:
    2021-01
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Jaye, Benjamin;Tolsa, Xavier;Villa, Michele
  • 通讯作者:
    Villa, Michele
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Benjamin Jaye其他文献

Benjamin Jaye的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Benjamin Jaye', 18)}}的其他基金

CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    2049477
  • 财政年份:
    2020
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
  • 批准号:
    1847301
  • 财政年份:
    2019
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
  • 批准号:
    1800015
  • 财政年份:
    2018
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
  • 批准号:
    1830128
  • 财政年份:
    2017
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
  • 批准号:
    1500881
  • 财政年份:
    2015
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Continuing Grant
Kent State Informal Analysis Seminar
肯特州立非正式分析研讨会
  • 批准号:
    1400019
  • 财政年份:
    2014
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Standard Grant
CBMS Conference: Introduction to the theory of valuations on convex sets
CBMS 会议:凸集估值理论简介
  • 批准号:
    1444411
  • 财政年份:
    2014
  • 资助金额:
    $ 9.39万
  • 项目类别:
    Standard Grant

相似国自然基金

高面板堆石坝面板挤压破损发生机制及防治措施研究
  • 批准号:
    52369022
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
  • 批准号:
    42377321
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
不同农地整治措施对土壤微生态环境的影响机理研究——以浙江省嘉善县为例
  • 批准号:
    42301230
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
沙地不同植被恢复措施下土壤有机碳固存及其微生物机制
  • 批准号:
    42301080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
  • 批准号:
    72372012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Utilizing mixed methods to understand social determinants of successful disease management among populations with comorbid cardiometabolic syndrome and anxiety disorder
利用混合方法了解患有心脏代谢综合征和焦虑症的人群中成功进行疾病管理的社会决定因素
  • 批准号:
    10808379
  • 财政年份:
    2023
  • 资助金额:
    $ 9.39万
  • 项目类别:
A Clinical Trial of Three Broadly Neutralizing Antibodies and Analytic Treatment Interruption in Early-Treated Children in Botswana
博茨瓦纳早期治疗儿童中三种广泛中和抗体和分析治疗中断的临床试验
  • 批准号:
    10764517
  • 财政年份:
    2023
  • 资助金额:
    $ 9.39万
  • 项目类别:
Analytic Core
分析核心
  • 批准号:
    10674968
  • 财政年份:
    2021
  • 资助金额:
    $ 9.39万
  • 项目类别:
Applying Novel Analytic Methods to Address the Impact of Race on Patient-Provider Communication
应用新颖的分析方法来解决种族对医患沟通的影响
  • 批准号:
    10187911
  • 财政年份:
    2021
  • 资助金额:
    $ 9.39万
  • 项目类别:
Analytic Core
分析核心
  • 批准号:
    10460364
  • 财政年份:
    2021
  • 资助金额:
    $ 9.39万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了