CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
基本信息
- 批准号:2049477
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Fractals and self-similar structures permeate the physical word, from statistical mechanics to material sciences. This project seeks to analyze how some fundamental physical objects interact with fractal structures. For instance, suppose we know that a field associated to a body in space (for instance its gravitational field) is well-behaved (say, has bounded magnitude), then what can we infer about the geometry of the body? Does the condition upon the field preclude the surface of the body from having a fractal type structure? A second topic considered concerns understanding signals whose frequencies have a self-similar or fractal behavior. More precisely, one is interested in the extent to which the signal can be reconstructed uniquely from a "small" set of values. The principal investigator (PI) will incorporate both graduate and undergraduate students into the research program, training them for future careers in STEM fields. The PI will organize annual undergraduate research symposia that will bring together undergraduate students interested in mathematical research across southeastern states to present their undergraduate research, build a network with others interested in pursuing research in the mathematical sciences, and provide information about research opportunities at the graduate level.This project concerns the analysis of operators when the geometry underlying the problem is rough or fractal in nature. The first question considered is: What can be deduced about a measure from the knowledge that a Calderon-Zygmund operator associated to it is bounded? Under these circumstances, can the measure have a fractal structure, or must its support be contained in (a countable number of) Lipschitz submanifolds of appropriate dimension? This basic question in analysis has found applications in the calculus of variations, the study of free boundaries, and the geometry of harmonic measure. Despite intense study over the last thirty years, the tools that serve as a bridge from the analytic condition on the field to the geometric structure of the measure are currently underdeveloped, something that this proposal aims to rectify. The second question is: How sparse must the support of the Fourier transform of a function be to ensure that the function can be uniquely reconstructed by its values on a "thick" subset? Although this question is a classical form of the uncertainty principle, it is not yet well understood, especially in several dimensions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
分形和自相似结构渗透到物理世界中,从统计力学到材料科学。 该项目旨在分析一些基本物理对象如何与分形结构相互作用。 例如,假设我们知道与空间中的物体相关的场(例如它的引力场)表现良好(例如,具有有限的大小),那么我们可以推断出物体的几何形状吗? 场上的条件是否阻止物体表面具有分形型结构? 考虑的第二个主题涉及理解频率具有自相似或分形行为的信号。 更准确地说,人们感兴趣的是可以在多大程度上从“小”值集唯一地重建信号。 首席研究员 (PI) 将把研究生和本科生纳入研究计划,为他们提供 STEM 领域未来职业培训。 PI 将组织年度本科生研究研讨会,将东南部各州对数学研究感兴趣的本科生聚集在一起,展示他们的本科生研究,与其他有兴趣从事数学科学研究的人建立网络,并提供有关研究生研究机会的信息该项目涉及当问题背后的几何形状本质上是粗糙或分形时的算子分析。 考虑的第一个问题是:根据与测度关联的 Calderon-Zygmund 算子是有界的知识,可以推断出什么关于测度的信息? 在这种情况下,测度是否可以具有分形结构,或者它的支持必须包含在(可数个)适当维数的利普希茨子流形中?这一基本分析问题已在变分计算、自由边界研究和调和测度几何中得到应用。 尽管过去三十年进行了深入的研究,但作为从现场分析条件到测量几何结构的桥梁的工具目前尚未开发出来,本提案旨在纠正这一点。 第二个问题是:函数的傅里叶变换的支持必须有多稀疏才能确保该函数可以通过其在“厚”子集上的值唯一地重建? 尽管这个问题是不确定性原理的经典形式,但尚未得到很好的理解,特别是在几个方面。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A proof of Carleson's 𝜀^2-conjecture
卡尔森 ?^2 猜想的证明
- DOI:10.4007/annals.2021.194.1.2
- 发表时间:2021-01
- 期刊:
- 影响因子:4.9
- 作者:Jaye, Benjamin;Tolsa, Xavier;Villa, Michele
- 通讯作者:Villa, Michele
Uncertainty Principles Associated to Sets Satisfying the Geometric Control Condition
满足几何控制条件的集合的不确定性原理
- DOI:10.1007/s12220-021-00830-x
- 发表时间:2022-03
- 期刊:
- 影响因子:0
- 作者:Green, Walton;Jaye, Benjamin;Mitkovski, Mishko
- 通讯作者:Mitkovski, Mishko
The Huovinen transform and rectifiability of measures
Huovinen 变换和测度的可修正性
- DOI:10.1016/j.aim.2022.108297
- 发表时间:2022-05
- 期刊:
- 影响因子:1.7
- 作者:Jaye, Benjamin;Merchán, Tomás
- 通讯作者:Merchán, Tomás
A sufficient condition for mobile sampling in terms of surface density
表面密度方面移动采样的充分条件
- DOI:10.1016/j.acha.2022.06.001
- 发表时间:2022-11
- 期刊:
- 影响因子:2.5
- 作者:Jaye, Benjamin;Mitkovski, Mishko
- 通讯作者:Mitkovski, Mishko
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Benjamin Jaye其他文献
Benjamin Jaye的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Benjamin Jaye', 18)}}的其他基金
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
- 批准号:
2103534 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
- 批准号:
2103534 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CAREER: Analysis of Operators on Rough Sets
职业:粗糙集算子分析
- 批准号:
1847301 - 财政年份:2019
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Geometry of Measures and Analytic Properties of Associated Operators
测度几何和关联算子的解析性质
- 批准号:
1800015 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
- 批准号:
1830128 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
The Geometry of Measures and Regularity of Associated Operators
措施的几何性和关联算子的规律性
- 批准号:
1500881 - 财政年份:2015
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
CBMS Conference: Introduction to the theory of valuations on convex sets
CBMS 会议:凸集估值理论简介
- 批准号:
1444411 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
面向实时视频分析的端云协作无服务器计算资源管理方法研究
- 批准号:62302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基因调控网络的系统性摄动分析及其应用
- 批准号:12371497
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
南极冰层边缘不稳定性的长时序跨周期分析关键技术研究
- 批准号:42301149
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多信号协同响应的核酸组分动态网络分析新方法研究
- 批准号:22304023
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
声子晶体特征值问题的高效计算及分析
- 批准号:12371377
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Averaging operators and related topics in harmonic analysis
谐波分析中的平均运算符和相关主题
- 批准号:
2348797 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Asymptotic Analysis of Almost-Periodic Operators of Quantum Mechanics
量子力学准周期算子的渐近分析
- 批准号:
2306327 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The algebraic analysis of evanescent operators in effective field theory and their asymptotic behavior
有效场论中倏逝算子的代数分析及其渐近行为
- 批准号:
22KJ1072 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Multilinear Operators and Microlocal Analysis of Electrical Impedance Tomography, Radar, and Seismology
电阻抗层析成像、雷达和地震学的多线性算子和微局域分析
- 批准号:
2204943 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant