Applying Novel Analytic Methods to Address the Impact of Race on Patient-Provider Communication
应用新颖的分析方法来解决种族对医患沟通的影响
基本信息
- 批准号:10187911
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAfrican AmericanAreaAttentionAwarenessCaringCodeCommunicationComplementDataData ScienceDiabetes MellitusDictionaryDimensionsDisadvantagedDiscriminationEducationElementsFeedbackFutureGeographyGoalsHealth Care ResearchHealth PersonnelHealth systemHealthcareHealthcare SystemsHumanInterventionIntervention StudiesLanguageLeadLearningLinguisticsManualsMeasuresMedicalMedical centerMethodologyMethodsMinorityMissionNatural Language ProcessingOutcomeParentsPatient CarePatient-Centered CarePatient-Focused OutcomesPatientsPatternPilot ProjectsPrimary Health CareProviderQuality of CareRaceRelationship-BuildingResearchRoleRoterSemanticsSocial DistanceSourceSpecificitySpeechSurveysSystemSystems AnalysisTestingTextTimeTranscriptTranslatingTranslationsVeteransVisitWorkanalytical methodbarrier to carebasecare outcomescare providerscomputerizedcostcultural competencedesigndisparity reductiondistrustethnic minority populationexperiencehealth care deliveryhealth care disparityhealth care qualityhealth care service utilizationhealth equityhealth equity promotionimprovedinnovationlexicalnoveloperationpatient populationpatient-clinician communicationracial differenceracial disparityracial minorityskillstooltrustworthiness
项目摘要
Background: Evidence from VA and non-VA settings demonstrates widespread racial disparities in
healthcare delivery. Our prior work suggests that providers with higher levels of “cultural competence” (CC)
deliver more equitable care. But how CC translates into better care is unclear. We will use data from our
current project, “Opening the Black Box of Cultural Competence” (aka Black Box), in which we are analyzing
communication content from audio recorded primary care visits. We will complement these content analyses
with computerized linguistic analysis methods to generate and test novel measures of patient-provider
communication and examine their role in disparities in patient-provider relationship quality.
Significance/Impact: Delivering high-quality care to all Veterans is central to VA's mission. We will address
a previously unexplored area that represents a potential target for reducing disparities in VA care. Our study
also addresses several VA HSR&D priority areas, including promoting health equity, improving primary care
practice, and advancing data science.
Innovation: Most studies of healthcare communication have focused on communication content (i.e., what is
said). By examining linguistic style (i.e., how things are said), we will address a relatively unexplored potential
source of racial disparities. In addition, by applying computerized, natural language processing (NLP) methods
to evaluate patient-provider communication, this study will develop and test potentially scalable tools and
metrics that can be implemented to provide real-time feedback to improve patient-provider interactions as part
of a learning health system striving to improve the delivery of high-quality, equitable care.
Specific Aims:
1) Apply computerized text analysis tools to transcripts of primary care visits to generate measures of patient
and provider linguistic style and style matching (LSM).
2) Test associations of: a) Veteran race and provider CC with LSM and provider linguistic style; and b) LSM
and provider linguistic style with the quality of patient-provider relationships.
3) Qualitatively explore examples of visits with high and low LSM and with provider linguistic style patterns
associated with high and low relationship quality.
Methodology: In the Black Box study, we are analyzing communication content, using the Roter Interaction
Analysis System, directly from the audio files of 408 primary care visits at 4 geographically diverse VA medical
centers. In the proposed project, we will transcribe the audio files and apply computerized, dictionary-based
lexical analysis tools to evaluate functional and semantic speech patterns and LSM between patient and
provider. We will test the associations described in Aim 2 using patient and provider survey data collected in
the parent study. Finally, we will qualitatively review selected transcripts to evaluate the mechanisms by which
LSM, and provider linguistic styles associated with relationship quality, are achieved.
Implementation/Next Steps: This pilot study is designed to develop novel methods and measures rather
than lead directly to a larger intervention study. The VHA Office of Health Equity (OHE), our current partner
on the Black Box study, will be our primary operations partner. We will also engage the Office of Patient-
Centered Care and Cultural Transformation. We will review our findings with these stakeholders to plan next
steps in translating our findings into improvements in patient-provider communication quality and equity.
背景:来自退伍军人事务部和非退伍军人事务部环境的证据表明,在
我们之前的工作表明,提供者具有更高水平的“文化能力”(CC)。
但我们将使用我们的数据来提供更公平的护理。
当前的项目“打开文化能力的黑匣子”(又名黑匣子),我们正在其中分析
我们将补充这些内容分析的音频记录的初级保健访问内容。
使用计算机语言分析方法来生成和测试患者-提供者的新措施
沟通并检查他们在医患关系质量差异中所扮演的角色。
意义/影响:为所有退伍军人提供高质量的护理是 VA 使命的核心,我们将致力于解决这一问题。
这是一个以前未探索过的领域,是减少退伍军人事务部护理差异的潜在目标。
还解决了 VA HSR&D 的几个优先领域,包括促进健康公平、改善初级保健
实践,并推进数据科学。
创新:大多数医疗保健沟通研究都集中在沟通内容(即什么是
通过检查语言风格(即如何说话),我们将解决相对未开发的潜力
此外,通过应用计算机化的自然语言处理(NLP)方法。
为了评估患者与提供者的沟通,本研究将开发和测试潜在的可扩展工具和
可以实施以提供实时反馈以改善患者与提供者互动的指标
学习型医疗系统致力于改善高质量、公平护理的提供。
具体目标:
1) 将计算机文本分析工具应用于初级保健就诊的记录,以生成患者的测量结果
以及提供商语言风格和风格匹配 (LSM)。
2) 测试以下各项的关联:a) 退伍军人种族和提供者 CC 与 LSM 和提供者语言风格;以及 b) LSM;
以及提供者的语言风格与医患关系的质量。
3) 定性探索具有高和低 LSM 以及提供者语言风格模式的访问示例
与关系质量的高低相关。
方法:在黑盒研究中,我们使用 Roter 交互来分析通信内容
分析系统,直接来自 4 个不同地理位置的 VA 医疗机构 408 次初级保健就诊的音频文件
在拟议的项目中,我们将转录音频文件并应用计算机化、基于词典的技术。
词汇分析工具,用于评估患者和患者之间的功能和语义语音模式以及 LSM
我们将使用在目标 2 中收集的患者和提供者调查数据来测试目标 2 中描述的关联。
最后,我们将对选定的成绩单进行定性审查,以评估其机制。
实现了 LSM 以及与关系质量相关的提供者语言风格。
实施/后续步骤:这项试点研究旨在开发新的方法和措施,而不是
直接而不是导致更大规模的干预研究 VHA 健康公平办公室 (OHE),我们目前的合作伙伴。
黑盒研究将是我们的主要运营合作伙伴,我们还将与患者办公室合作。
我们将与这些利益相关者一起审查我们的调查结果以制定下一步计划。
将我们的发现转化为改善患者与提供者沟通质量和公平性的步骤。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Validating computer-generated measures of linguistic style matching and accommodation in patient-clinician communication.
验证计算机生成的患者与临床医生沟通中语言风格匹配和适应的测量。
- DOI:
- 发表时间:2024-02
- 期刊:
- 影响因子:3.5
- 作者:Khaleghzadegan, Salar;Rosen, Michael;Links, Anne;Ahmad, Alya;Kilcullen, Molly;Boss, Emily;Beach, Mary Catherine;Saha, Somnath
- 通讯作者:Saha, Somnath
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SOMNATH SAHA其他文献
SOMNATH SAHA的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SOMNATH SAHA', 18)}}的其他基金
Measuring Cultural Competence and Racial Bias Among Physicians
衡量医生的文化能力和种族偏见
- 批准号:
7384392 - 财政年份:2007
- 资助金额:
-- - 项目类别:
Measuring Cultural Competence and Racial Bias Among Physicians
衡量医生的文化能力和种族偏见
- 批准号:
7243188 - 财政年份:2007
- 资助金额:
-- - 项目类别:
相似海外基金
Using a Health Disparity Research Framework to examine mechanisms linking Obstructive Sleep Apnea with higher Alzheimer’s disease risk in older Blacks/African-Americans
使用健康差异研究框架来研究老年黑人/非裔美国人中阻塞性睡眠呼吸暂停与阿尔茨海默病较高风险之间的联系机制
- 批准号:
10662903 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Using a Health Disparity Research Framework to examine mechanisms linking Obstructive Sleep Apnea with higher Alzheimer’s disease risk in older Blacks/African-Americans
使用健康差异研究框架来研究老年黑人/非裔美国人中阻塞性睡眠呼吸暂停与阿尔茨海默病较高风险之间的联系机制
- 批准号:
10662903 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Water Emergency Team (WET): Community-Driven Rapid Response Team to Evaluate Antibiotic-Resistant Bacteria Exposures and Household Environmental Health Risks from Sewer Overflows and Basement Flooding
水应急小组 (WET):社区驱动的快速响应小组,评估下水道溢出和地下室洪水导致的抗生素耐药细菌暴露和家庭环境健康风险
- 批准号:
10686675 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Stress Response of Preterm Infants to NICU Caregiving
早产儿对 NICU 护理的应激反应
- 批准号:
10682923 - 财政年份:2023
- 资助金额:
-- - 项目类别:
1/2 Drug Development and Capacity Building: A UCR/CoH-CCC Partnership
1/2 药物开发和能力建设:UCR/CoH-CCC 合作伙伴关系
- 批准号:
10762157 - 财政年份:2023
- 资助金额:
-- - 项目类别: