Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
基本信息
- 批准号:2126178
- 负责人:
- 金额:$ 25.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Modern human society requires efficient, affordable and safe means for energy storage. Today, rechargeable lithium–ion batteries dominate the energy storage landscape from portable electronics to the rapidly expanding electric vehicles and electricity (grid) storage applications. However, current lithium-ion batteries suffer from safety and cost issues, primarily because of flammable, moisture-sensitive and expensive organic solvents used in the electrolytes. This project is aimed at replacing the organic solvent electrolyte with water, in a manner that does not compromise on battery performance (i.e., volumetric and gravimetric energy and power density). To accomplish this, the research team proposes to explore new classes of complex oxide (niobium tungsten oxide) materials that will be designed specifically for aqueous battery chemistries, enabling breakthrough improvements in volumetric energy and power density for the next generation of aqueous batteries. This work will contribute to low-cost, high-performance and safe aqueous batteries that are critical for large-scale energy storage. A number of fundamental science and engineering issues will be addressed in this project in order to enable the successful development of aqueous lithium-ion batteries with niobium tungsten oxide anodes. These include: (1) Benchmarking the chemical stability of niobium tungsten oxide anodes in aqueous (water-in-salt) electrolytes and establishing whether a protective coating is needed to improve stability; (2) Developing an in-depth understanding of aqueous electrolyte lithiation and delithation mechanism(s) in niobium tungsten oxide anodes; (3) Studying the interfacial chemistry and solid electrolyte interface that develops during battery operation; and (4) Compositional engineering (i.e., alloying and doping) of niobium tungsten oxide compounds to improve their gravimetric and rate performance. In this project, each of the above tasks will be addressed using a coupled experimental and computational approach, so that a deep and in-depth fundamental understanding of the underlying science can be achieved. Success will be assessed by an ability to optimize the niobium tungsten oxide composition and increase the operating voltage window of the aqueous battery, leading to a substantial increase in volumetric and gravimetric energy density. Success will also be determined by the team’s ability to enhance the high-rate performance of niobium tungsten oxides in an aqueous setting, leading to significant improvement in fast charging capability. Finally, the niobium tungsten oxide electrodes will be optimized and engineered to cycle in a stable and safe manner over thousands of charge-discharge steps with high coulombic efficiency.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代人类社会需要有效,负担得起和安全的能力来存储能源。如今,可充电锂离子电池从便携式电子设备到快速扩展的电动汽车和电动(网格)存储应用中主导了能源存储景观。但是,当前的锂离子电池遭受了安全性和成本问题的困扰,主要是由于电子产品中使用的易燃,敏感和昂贵的有机解决方案。该项目的目的是用水代替有机溶剂电解质,而不会损害电池性能(即体积和粒度能量和功率密度)。为此,研究团队的提议探索了将专门为水电化学家设计的新型复杂氧化物(氧化物钨)材料,从而为下一代电池提供了体积能量和功率密度的突破。工作将有助于低成本,高性能和安全的水电池,这对于大规模储能至关重要。该项目将解决许多基本的科学和工程问题,以便能够成功开发使用Niobium Tungsten氧化物阳极的锂离子电池。其中包括:(1)基准测试水(水中水中)电解质中氧化钨氧化物的化学稳定性,并确定是否需要受保护的涂层以改善稳定性; (2)在氧化二氧化碳钨中,对水解片段和界定机制的深入了解; (3)研究电池操作过程中发生的界面化学和固体电解质界面; (4)氧化物钨化合物的组成工程(即合金和掺杂),以提高其重量和速率性能。在该项目中,将使用耦合的实验和计算方法来解决上述每个任务,以便可以深入介绍对基础科学的深入和深入的基本理解。成功将通过优化氧化物氧化钨的能力并增加水电池的工作电压窗口,从而评估成功,从而导致体积和粒度能量密度大幅增加。成功也将取决于团队在水性环境中提高niobium钨氧化物高速率性能的能力,从而显着提高了快速充电能力。最后,将优化和设计氧化物氧化物电极,以稳定且安全的方式循环,以高哥伦比克效率高,以稳定而安全。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛的影响审查的审查标准来通过评估来通过评估来获得的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanostructuring versus microstructuring in battery electrodes
- DOI:10.1038/s41578-022-00454-9
- 发表时间:2022-06-29
- 期刊:
- 影响因子:83.5
- 作者:Jain, Rishabh;Lakhnot, Aniruddha Singh;Koratkar, Nikhil
- 通讯作者:Koratkar, Nikhil
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nikhil Koratkar其他文献
Short period sinusoidal thermal modulation for quantitative identification of gas species
用于定量识别气体种类的短周期正弦热调制
- DOI:
10.1039/c9nr05863j - 发表时间:
2020 - 期刊:
- 影响因子:6.7
- 作者:
Aijun Yang;Jifeng Chu;Weijuan Li;Dawei Wang;Xu Yang;Tiansong Lan;Xiaohua Wang;Mingzhe Rong;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors’ Performance in the Internet of Things
虚拟交流测量提高了半导体气体传感器在物联网中的性能
- DOI:
10.1109/jiot.2021.3108799 - 发表时间:
2021-08 - 期刊:
- 影响因子:10.6
- 作者:
Dawei Wang;Jianbing Pan;Xianbo Huang;Jifeng Chu;Huan Yuan;Aijun Yang;Nikhil Koratkar;Xiaohua Wang;Mingzhe Rong - 通讯作者:
Mingzhe Rong
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
- DOI:
10.1016/j.nanoen.2024.110010 - 发表时间:
2024-10-01 - 期刊:
- 影响因子:
- 作者:
Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries
用于高性能锂离子电池的氧化石墨烯的可扩展且快速的远红外还原
- DOI:
10.1016/j.ensm.2015.06.001 - 发表时间:
2015-11 - 期刊:
- 影响因子:20.4
- 作者:
Yuan Xia;Ningyu Gu;Zhenyu Yang;Nikhil Koratkar - 通讯作者:
Nikhil Koratkar
Ultrathin and Strong Electrospun Porous Fiber Separator
超薄强力静电纺多孔纤维分离器
- DOI:
10.1021/acsaem.8b00855 - 发表时间:
2018-08 - 期刊:
- 影响因子:6.4
- 作者:
Jiao Long Pan;Ze Zhang;Hai Zhang;Pei Pei Zhu;Jun Chao Wei;Jian Xin Cai;Ji Yu;Nikhil Koratkar;Zhen Yu Yang - 通讯作者:
Zhen Yu Yang
Nikhil Koratkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nikhil Koratkar', 18)}}的其他基金
Fundamental Study of Interaction of Ions Present in Water with Graphene Coatings for Energy Harvesting
水中存在的离子与石墨烯涂层相互作用的基础研究用于能量收集
- 批准号:
2002742 - 财政年份:2020
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
- 批准号:
2013640 - 财政年份:2020
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
- 批准号:
2015750 - 财政年份:2020
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
PFI-TT: Next Generation Lithium-Metal Batteries for High Performance, Low Cost and Safe Energy Storage
PFI-TT:用于高性能、低成本和安全储能的下一代锂金属电池
- 批准号:
1922633 - 财政年份:2019
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
PFI:AIR - TT: Demonstration and Device Level Characterization of Lithium-Ion Batteries with Graphene and Graphene-Silicon Based Anodes in Pouch and Cylindrical Cell Form Factors
PFI:AIR - TT:采用石墨烯和石墨烯硅基阳极的软包和圆柱形电池形状的锂离子电池的演示和设备级表征
- 批准号:
1640340 - 财政年份:2016
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Transition Metal Doping in Two-Dimensional, Atomically Thin Semiconductors
二维原子薄半导体中的过渡金属掺杂
- 批准号:
1608171 - 财政年份:2016
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
UNS: Dendrite-Free Storage of Lithium Metal in Porous Graphene Networks
UNS:多孔石墨烯网络中锂金属的无枝晶存储
- 批准号:
1510828 - 财政年份:2015
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Rapid and Scalable Manufacturing of Graphene Electrodes for Next Generation Lithium-ion Batteries
快速、可扩展地制造下一代锂离子电池的石墨烯电极
- 批准号:
1435783 - 财政年份:2014
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Fundamental Study of Wear in Graphene Nanocomposites
石墨烯纳米复合材料磨损的基础研究
- 批准号:
1234641 - 财政年份:2012
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Next Generation Li-Ion Rechargeable Batteries Featuring Nano-Engineered Anode Architectures
采用纳米工程阳极架构的下一代锂离子充电电池
- 批准号:
0969895 - 财政年份:2010
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
相似国自然基金
火星磁鞘及上游太阳风中磁镜结构基本性质与起源的研究
- 批准号:42374213
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
面向印刷工艺异靛蓝基本征可拉伸聚合物半导体材料的合成与可打印性研究
- 批准号:52373050
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
基本养老保险降费改革的共同富裕效应研究:基于终生和年度收入视角
- 批准号:72304117
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于石墨间层质心插入理论的插层化学基本反应机制研究
- 批准号:22379110
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
经济基本面与期权定价研究:基于经济不确定性的视角
- 批准号:72301227
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
- 批准号:
2426728 - 财政年份:2024
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Cache-aided Multi-user Private Function Retrieval
协作研究:CIF:中:缓存辅助多用户私有函数检索的基本限制
- 批准号:
2312229 - 财政年份:2023
- 资助金额:
$ 25.84万 - 项目类别:
Continuing Grant
Collaborative Research: RUI: IRES Track I: From fundamental to applied soft matter: research experiences in Mexico
合作研究:RUI:IRES 第一轨:从基础到应用软物质:墨西哥的研究经验
- 批准号:
2245405 - 财政年份:2023
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Collaborative Research: Effective Numerical Schemes for Fundamental Problems Related to Incompressible Fluids
合作研究:与不可压缩流体相关的基本问题的有效数值方案
- 批准号:
2309748 - 财政年份:2023
- 资助金额:
$ 25.84万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Fundamental Limits of Privacy-Enhancing Technologies
合作研究:CIF:中:隐私增强技术的基本限制
- 批准号:
2312666 - 财政年份:2023
- 资助金额:
$ 25.84万 - 项目类别:
Continuing Grant