Fundamental Study of Interaction of Ions Present in Water with Graphene Coatings for Energy Harvesting

水中存在的离子与石墨烯涂层相互作用的基础研究用于能量收集

基本信息

  • 批准号:
    2002742
  • 负责人:
  • 金额:
    $ 31.73万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project will investigate an approach to energy harvesting based on the interaction of a fluid such as water with a graphene surface. Graphene is a highly flexible, two-dimensional sheet of carbon atoms and is ideally suited for the coating of large surfaces. This project aims to demonstrate that water flow over graphene surfaces can directly generate electricity. Graphene is ideally suited for this application, since it possesses high-mobility charge carriers that are ready to be coupled to moving ions present in the flowing fluid. Graphene is also flexible, minimally invasive (it is the thinnest material), chemically and mechanically stable, and environmentally benign. Moreover, its synthesis is scalable and macro-scale continuous graphene films can be produced by roll-to-roll deposition techniques. The proposed graphene coating offers unique possibilities for energy harvesting from hitherto untapped renewable sources such as rain, tidal action, waves, ocean currents, river water as well as water flow over boats, submarines, and bridges. Such graphene skins could enable harvesting of the ubiquitous, abundant and renewable mechanical energy of moving water directly to electrical energy. Unlike traditional schemes, the graphene coating directly converts the flow energy into electrical energy without the need for moving parts. Such graphene coatings could also replace conventional batteries (which are environmentally hazardous) in low-power, low-voltage and long service-life applications. Once scaled up, this concept offers a potentially transformative approach to energy harvesting, as compared with incremental advances in current technologies. The investigators will develop specially designed interactive learning modules (or virtual labs) which will be integrated into the curriculum. Outreach includes demonstrations to undergraduates as well as to high school students and teachers. The PIs aim is to popularize science and to attract under-represented groups to pursue careers in renewable energy technologies. This project will tackle the fundamental science and engineering challenges associated with developing graphene-based coatings for nano-fluidic power harvesting. The key science challenge involves understanding in-depth the mechanism(s) responsible for nano-fluidic power harvesting in graphene films. In particular, the project aims to develop a fundamental understanding of how ions present in a fluid such as water, interact and couple with graphene-coated as well as free-standing graphene surfaces. This will be addressed using carefully designed control experiments in conjunction with molecular dynamics and first principles density functional theory calculations. The engineering challenge is equally important and involves scaling up the graphene size in a manner that retains the outstanding power density of the coating. This will be addressed by adapting newly developed roll-to-roll and template-directed chemical vapor deposition techniques to produce macroscale graphene films and foams. The graphene manufacturing process will be optimized to avoid physical interfaces (breaks) in the film as it is scaled up to macroscale dimensions and to tightly control thickness and structure-properties of the graphene. The coupling between experiments and theory, modeling and simulation work will build fundamental understanding of the underlying science and enable successful development, optimization and validation of the proposed technology. The PIs will develop specially designed interactive learning modules (or virtual labs) which will be integrated into the curriculum. Outreach includes demonstrations to undergraduates as well as to high school students and teachers. The PIs aim is to popularize science and to attract under-represented groups to pursue careers in renewable energy technologies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将根据流体(例如水与石墨烯表面)的相互作用来研究一种能量收集的方法。石墨烯是一种高度柔韧的二维碳原子,非常适合大型表面涂层。该项目旨在证明水石表面上的水流可以直接产生电力。石墨烯非常适合此应用,因为它具有可与流动流体中存在的离子耦合的高搬进荷载载流子。石墨烯也具有柔性,微创(它是最薄的材料),化学和机械稳定,并且在环境上进行良性。此外,它的合成是可扩展的,宏观连续石墨烯膜可以通过卷到滚动沉积技术产生。拟议的石墨烯涂料为迄今未开发的可再生能源(例如雨水,潮汐作用,波浪,海流,洋流,河流,河水,河水以及船,潜艇和桥梁的水流动)提供了独特的能量收获。这样的石墨烯皮可以可以直接将流动水的无处不在,丰富和可再生的机械能收集到电能。与传统方案不同,石墨烯涂料直接将流量转换为电能,而无需移动部件。这种石墨烯涂料还可以替代传统的电池(环境危险),低压,低压和长期服务寿命应用。一旦扩展,与当前技术的增量进步相比,这个概念提供了一种潜在的能源收集方法。研究人员将开发专门设计的交互式学习模块(或虚拟实验室),该模块将集成到课程中。外展包括向大学生以及高中生和老师的示威游行。 PIS的目的是普及科学,并吸引代表性不足的群体从事可再生能源技术的职业。 该项目将应对与开发基于石墨烯的涂料相关的基本科学和工程挑战,用于纳米富集功率。关键的科学挑战涉及深入了解石墨烯膜中纳米富集功率收集的机制。特别是,该项目旨在对流体中存在的离子(例如水,相互作用)以及与石墨烯涂层以及独立的石墨烯表面相互作用的基本了解。这将使用精心设计的控制实验以及分子动力学和第一原理密度功能理论计算来解决这。 工程挑战同样重要,并涉及以保持涂层的出色功率密度的方式扩展石墨烯尺寸。这将通过调整新开发的卷到滚动和模板为导向的化学蒸气沉积技术来解决这一问题,以生产宏观的石墨烯膜和泡沫。石墨烯制造过程将被优化,以避免膜中的物理界面(断裂),因为它被扩展到宏观尺寸,并严格控制石墨烯的厚度和结构范围。实验与理论,建模和仿真工作之间的耦合将建立对基础科学的基本理解,并能够成功开发,优化和验证所提出的技术。 PI将开发专门设计的交互式学习模块(或虚拟实验室),该模块将集成到课程中。外展包括向大学生以及高中生和老师的示威游行。 PIS的目的是普及科学,并吸引代表性不足的团体从事可再生能源技术的职业。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响评估标准的评估值得支持的。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nikhil Koratkar其他文献

Short period sinusoidal thermal modulation for quantitative identification of gas species
用于定量识别气体种类的短周期正弦热调制
  • DOI:
    10.1039/c9nr05863j
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    Aijun Yang;Jifeng Chu;Weijuan Li;Dawei Wang;Xu Yang;Tiansong Lan;Xiaohua Wang;Mingzhe Rong;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar
Virtual Alternating Current Measurements Advance Semiconductor Gas Sensors’ Performance in the Internet of Things
虚拟交流测量提高了半导体气体传感器在物联网中的性能
  • DOI:
    10.1109/jiot.2021.3108799
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    10.6
  • 作者:
    Dawei Wang;Jianbing Pan;Xianbo Huang;Jifeng Chu;Huan Yuan;Aijun Yang;Nikhil Koratkar;Xiaohua Wang;Mingzhe Rong
  • 通讯作者:
    Mingzhe Rong
Nano-silica electrolyte additive enables dendrite suppression in an anode-free sodium metal battery
  • DOI:
    10.1016/j.nanoen.2024.110010
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Reena A. Panchal;Joy Datta;Vrushali Varude;Kevin Bhimani;Varad Mahajani;Mithil Kamble;Apurva Anjan;Rohit M. Manoj;R. Helen Zha;Dibakar Datta;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar
Ultrathin and Strong Electrospun Porous Fiber Separator
超薄强力静电纺多孔纤维分离器
  • DOI:
    10.1021/acsaem.8b00855
  • 发表时间:
    2018-08
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Jiao Long Pan;Ze Zhang;Hai Zhang;Pei Pei Zhu;Jun Chao Wei;Jian Xin Cai;Ji Yu;Nikhil Koratkar;Zhen Yu Yang
  • 通讯作者:
    Zhen Yu Yang
Scalable and rapid Far Infrared reduction of graphene oxide for high performance lithium ion batteries
用于高性能锂离子电池的氧化石墨烯的可扩展且快速的远红外还原
  • DOI:
    10.1016/j.ensm.2015.06.001
  • 发表时间:
    2015-11
  • 期刊:
  • 影响因子:
    20.4
  • 作者:
    Yuan Xia;Ningyu Gu;Zhenyu Yang;Nikhil Koratkar
  • 通讯作者:
    Nikhil Koratkar

Nikhil Koratkar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nikhil Koratkar', 18)}}的其他基金

Collaborative Research: Fundamental Study of Niobium Tungsten Oxide Anodes for High-Performance Aqueous Batteries
合作研究:高性能水系电池用铌钨氧化物阳极的基础研究
  • 批准号:
    2126178
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Collaborative Research: Fundamental Study of Environmentally Stable and Lead-Free Chalcogenide Perovskites for Optoelectronic Device Engineering
合作研究:用于光电器件工程的环境稳定、无铅硫系钙钛矿的基础研究
  • 批准号:
    2013640
  • 财政年份:
    2020
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Fundamental Study of Fatigue Life Enhancement in Hierarchical Carbon-Fiber/Epoxy/Nanoparticle Composites
多级碳纤维/环氧树脂/纳米颗粒复合材料疲劳寿命增强的基础研究
  • 批准号:
    2015750
  • 财政年份:
    2020
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
PFI-TT: Next Generation Lithium-Metal Batteries for High Performance, Low Cost and Safe Energy Storage
PFI-TT:用于高性能、低成本和安全储能的下一代锂金属电池
  • 批准号:
    1922633
  • 财政年份:
    2019
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
PFI:AIR - TT: Demonstration and Device Level Characterization of Lithium-Ion Batteries with Graphene and Graphene-Silicon Based Anodes in Pouch and Cylindrical Cell Form Factors
PFI:AIR - TT:采用石墨烯和石墨烯硅基阳极的软包和圆柱形电池形状的锂离子电池的演示和设备级表征
  • 批准号:
    1640340
  • 财政年份:
    2016
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Transition Metal Doping in Two-Dimensional, Atomically Thin Semiconductors
二维原子薄半导体中的过渡金属掺杂
  • 批准号:
    1608171
  • 财政年份:
    2016
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
UNS: Dendrite-Free Storage of Lithium Metal in Porous Graphene Networks
UNS:多孔石墨烯网络中锂金属的无枝晶存储
  • 批准号:
    1510828
  • 财政年份:
    2015
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Rapid and Scalable Manufacturing of Graphene Electrodes for Next Generation Lithium-ion Batteries
快速、可扩展地制造下一代锂离子电池的石墨烯电极
  • 批准号:
    1435783
  • 财政年份:
    2014
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Fundamental Study of Wear in Graphene Nanocomposites
石墨烯纳米复合材料磨损的基础研究
  • 批准号:
    1234641
  • 财政年份:
    2012
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant
Next Generation Li-Ion Rechargeable Batteries Featuring Nano-Engineered Anode Architectures
采用纳米工程阳极架构的下一代锂离子充电电池
  • 批准号:
    0969895
  • 财政年份:
    2010
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Standard Grant

相似国自然基金

非线性长短波系统中的深度学习方法及应用
  • 批准号:
    12226322
  • 批准年份:
    2022
  • 资助金额:
    20.0 万元
  • 项目类别:
    数学天元基金项目
基于图表示学习的lncRNA与miRNA相互作用预测方法研究
  • 批准号:
    62262049
  • 批准年份:
    2022
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
非线性长短波系统中的深度学习方法及应用
  • 批准号:
    12226332
  • 批准年份:
    2022
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
可解释性深度学习方法用于泛素连接酶-底物相互作用识别区域研究
  • 批准号:
    32271518
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
深度学习赋能的人与病毒蛋白相互作用的预测和分析
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Construction of an innovative photoreaction fields that possess quantum coherent strong coupling and study of its fundamental principle
具有量子相干强耦合的创新光反应场的构建及其基本原理研究
  • 批准号:
    23H05464
  • 财政年份:
    2023
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Grant-in-Aid for Scientific Research (S)
Fundamental study on seismic followability of culvert installed in embankment
路堤涵洞地震跟随性基础研究
  • 批准号:
    21K14241
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Novel NOTCH4 Pathway of Asthma Severity in Urban School Children: Clinical Research Center, Boston Children’s Hospital
城市学童哮喘严重程度的新型 NOTCH4 途径:波士顿儿童医院临床研究中心
  • 批准号:
    10210940
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
Novel NOTCH4 Pathway of Asthma Severity in Urban School Children: Clinical Research Center, Boston Children’s Hospital
城市学童哮喘严重程度的新型 NOTCH4 途径:波士顿儿童医院临床研究中心
  • 批准号:
    10592358
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
Novel NOTCH4 Pathway of Asthma Severity in Urban School Children: Clinical Research Center, Boston Children’s Hospital
城市学童哮喘严重程度的新型 NOTCH4 途径:波士顿儿童医院临床研究中心
  • 批准号:
    10392449
  • 财政年份:
    2021
  • 资助金额:
    $ 31.73万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了