CCSS: Online Learning for IoT Monitoring and Management

CCSS:物联网监控和管理在线学习

基本信息

  • 批准号:
    2126052
  • 负责人:
  • 金额:
    $ 41.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

At the core of several emerging technological advances lies the notion of Internet-of-Things (IoT). Conceptually, IoT is envisioned as an intelligent network infrastructure with a huge number of ubiquitous smart devices present in diverse application domains such as smart buildings, group and personalized healthcare, as well as self-driving connected vehicles, to name a few. Today, a number of IoT applications have already improved many aspects of daily life. However, critical challenges need to be addressed before embracing the full potential of IoT. This in turn calls for innovative machine learning approaches that account for scalability, heterogeneity, adaptivity, and robustness to unpredictable uncertainties -- what are the central challenges facing the emerging IoT monitoring and management tasks. Novel algorithms and their performance need to leverage recent advances in data science, optimization, statistical signal processing, communications, and networking. In addition to markedly influencing future IoT modules, insights gained from this project's learning and inference will also cross-fertilize benefits to a gamut of additional domains, including smart grids, smart cities, and self-driving vehicles. At a broader scale, the developed technologies will provide valuable tools for foundational science and engineering research, and advocate societal embracing of the emergent IoT technologies. Broader impact will be further effected by the integration of research with an educational plan designed to train the new cadre of next-generation of IoT professionals, as well as foster cross-pollination of academic research to industry needs, while promoting and embracing diversity in Science and Engineering.To address the core IoT challenges, this project puts forth foundational tools for real-time interactive function learning using an ensemble of experts. Learning algorithms will be developed with adaptivity and quantifiable performance even in environments with unpredictable dynamics, but also with ability to scale in terms of i) the huge number of ‘Things’ in IoT; ii) the high-dimensional feature vectors involved in sophisticated learning tasks; and iii) the massive data collected, processed, and exchanged over the IoT graph – what is desired for IoT monitoring. Scalability, adaptivity, and robustness benefits in learning nonlinear functions will be further permeated to interactive black-box Bayesian optimization, and reinforcement learning with an ensemble of experts -- merits that will boost performance in open- and closed-loop IoT management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
物联网 (IoT) 概念是多项新兴技术进步的核心,从概念上讲,物联网被设想为一种智能网络基础设施,在智能建筑、智能群组等不同应用领域中存在大量无处不在的智能设备。如今,许多物联网应用已经改善了日常生活的许多方面,但在充分发挥物联网的潜力之前,还需要解决一些关键挑战。这反过来又需要创新的机器学习考虑可扩展性、异构性、适应性和对不可预测的不确定性的鲁棒性的方法——新兴物联网监控和管理任务面临的主要挑战是什么,以及它们的性能需要利用数据科学、优化、统计算法、通信方面的最新进展。除了显着影响未来的物联网模块外,从该项目的学习和推理中获得的见解还将为一系列其他领域带来交叉效益,包括智能电网、智能城市和自动驾驶汽车。在更广泛的范围内,所开发的技术将为基础科学和工程研究提供宝贵的工具,并倡导普遍采用新兴的物联网技术,将研究与旨在培训下一代新干部的教育计划相结合,将进一步产生更广泛的影响。 -培养物联网专业人员,并促进学术研究与行业需求的交叉授粉,同时促进和拥抱科学和工程的多样性。为了解决核心物联网挑战,该项目提出了实时交互式功能学习的基础工具使用一组专家的学习算法将。即使在动态不可预测的环境中,也能具有适应性和可量化的性能,而且能够在 i) 物联网中的大量“事物”方面进行扩展;ii) 复杂学习任务中涉及的高维特征向量; iii) 通过物联网图收集、处理和交换的海量数据——学习非线性函数的可扩展性、适应性和鲁棒性优势将进一步渗透到交互式黑盒贝叶斯优化和强化学习中。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(21)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Time-Domain Generalization of Kron Reduction
Kron 约简的时域推广
  • DOI:
    10.1109/lcsys.2022.3185939
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Singh, Manish K.;Dhople, Sairaj;Dorfler, Florian;Giannakis, Georgios B.
  • 通讯作者:
    Giannakis, Georgios B.
Scalable Bayesian Meta-Learning through Generalized Implicit Gradients
  • DOI:
    10.1609/aaai.v37i9.26337
  • 发表时间:
    2023-03
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yilang Zhang;Bingcong Li;Shi-Ji Gao;G. Giannakis
  • 通讯作者:
    Yilang Zhang;Bingcong Li;Shi-Ji Gao;G. Giannakis
Identifying Dependent Annotators in Crowdsourcing
识别众包中的依赖注释器
Learning while Respecting Privacy and Robustness to Adversarial Distributed Datasets
Surrogate Modeling for Bayesian Optimization Beyond a Single Gaussian Process
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Giannakis其他文献

Georgios Giannakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Giannakis', 18)}}的其他基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Continuing Grant
IMR: MM-1C: Learning-driven Models for 5G Internet Measurements
IMR:MM-1C:5G 互联网测量的学习驱动模型
  • 批准号:
    2220292
  • 财政年份:
    2022
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
  • 批准号:
    2128593
  • 财政年份:
    2021
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
Hybrid mmWave mMIMO Transceiver Design for Doubly-Selective Channels
适用于双选通道的混合毫米波 mMIMO 收发器设计
  • 批准号:
    2102312
  • 财政年份:
    2020
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Collective Intelligence for Proactive Autonomous Driving (CI-PAD)
CPS:中:协作研究:主动自动驾驶集体智慧 (CI-PAD)
  • 批准号:
    2103256
  • 财政年份:
    2020
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CIF: Medium: Adaptive Diffusions for Scalable and Robust Learning over Graphs
CIF:中:用于图上可扩展和鲁棒学习的自适应扩散
  • 批准号:
    1901134
  • 财政年份:
    2019
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Learn-and-Adapt to Manage Dynamic Cyber-Physical Networks
CCSS:协作研究:学习和适应管理动态信息物理网络
  • 批准号:
    1711471
  • 财政年份:
    2017
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Smart-Grid Powered Green Communications in Heterogeneous Networks
CCSS:协作研究:异构网络中智能电网驱动的绿色通信
  • 批准号:
    1508993
  • 财政年份:
    2015
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
  • 批准号:
    1500713
  • 财政年份:
    2015
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Standard Grant

相似国自然基金

社交媒体环境下基于深度强化学习的适应性在线资产配置策略研究
  • 批准号:
    72371080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
教育公平视角下在线学习平台的智能学习策略研究
  • 批准号:
    72301269
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
受限反馈下的可信在线学习
  • 批准号:
    62376275
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
融合离线-在线强化学习的网联自动驾驶协同换道策略研究
  • 批准号:
    52302418
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模在线教育场景中基于动态异质图解耦表征的学习评价与预测研究
  • 批准号:
    62377015
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Research Grant
Personalized Online Adaptive Learning System
个性化在线自适应学习系统
  • 批准号:
    23K20186
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Learning about ChatGPT for educational purposes: Examining the role of online teacher communities for supporting teachers in Japan
了解用于教育目的的 ChatGPT:检查在线教师社区在支持日本教师方面的作用
  • 批准号:
    24K16767
  • 财政年份:
    2024
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Measurement of physiological load in online learning and verification of the effect of creating a background sound environment
在线学习生理负荷测量及背景音环境营造效果验证
  • 批准号:
    23K11370
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Study on Modeling Collaborative Online International Learning (COIL) Program at Multinational Nursing Universities
跨国护理大学在线国际协作学习(COIL)项目建模研究
  • 批准号:
    23K09891
  • 财政年份:
    2023
  • 资助金额:
    $ 41.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了