CPS: Medium: Collaborative Research: Collective Intelligence for Proactive Autonomous Driving (CI-PAD)

CPS:中:协作研究:主动自动驾驶集体智慧 (CI-PAD)

基本信息

  • 批准号:
    2103256
  • 负责人:
  • 金额:
    $ 95.83万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

The aim of this project is to develop real-time situational awareness that is shared via vehicle-to-vehicle (V2V) and vehicle-to-network (V2X). The approach is to combine the perception of sensors with interpretation of their situation to enable safer decisions, and take into account the limitations of the communication between vehicles and infrastructure. A highway system that supports autonomous and self-driven vehicles will include infrastructure sensors and onboard vehicle sensors, with massive connectivity among them and distributed intelligence across the entire transportation network. The resulting collective intelligence is one where autonomous vehicles serve as mobile sensors that augment one another along with fixed infrastructure sensors, to construct a real-time picture of traffic. This real-time picture is used to develop proactive driving actions that optimize traffic flow and minimize accident risk. The broader impacts include focused mentoring of undergraduate students who are interested in careers that require graduate training, to broaden participation in the fields of computing and engineering.The researchers organize an interdisciplinary project in signal processing and machine learning, control and optimization, communication and network science. The collective intelligence framework for proactive driving includes the following modules: 1) Scene Construction, consisting of signal processing and machine learning for constructing a representation of the driving environment from multi-modal multi-view sensors; 2) Situational Interpretation, consisting of driving environment dynamic analysis at progressive levels; 3) Decision Making, consisting of optimization and control to support proactive driving for safety and optimized flow; and 4) A Failsafe Network, consisting of communication and network science that supports optimized traffic flow under nominal conditions of sensing and communication, and moderated flow under conditions of compromised sensing and communication.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目标是开发通过车对车 (V2V) 和车对网络 (V2X) 共享的实时态势感知。该方法是将传感器的感知与对其情况的解释相结合,以实现更安全的决策,并考虑车辆和基础设施之间通信的限制。支持自动驾驶和自动驾驶车辆的高速公路系统将包括基础设施传感器和车载车辆传感器,它们之间具有大规模连接,并在整个交通网络中提供分布式智能。由此产生的集体智慧是,自动驾驶汽车充当移动传感器,与固定基础设施传感器相互增强,以构建实时交通图像。该实时图像用于制定主动驾驶行动,以优化交通流量并最大限度地降低事故风险。更广泛的影响包括重点指导那些对需要研究生培训的职业感兴趣的本科生,以扩大对计算和工程领域的参与。研究人员在信号处理和机器学习、控制和优化、通信和网络方面组织了一个跨学科项目科学。主动驾驶的集体智能框架包括以下模块: 1)场景构建,包括信号处理和机器学习,用于从多模态多视图传感器构建驾驶环境的表示; 2)情景解释,包括逐级进行驾驶环境动态分析; 3)决策,包括优化和控制,以支持主动驾驶以实现安全和优化流程; 4) 故障安全网络,由通信和网络科学组成,支持在标称传感和通信条件下优化流量,以及在传感和通信受损条件下调节流量。该奖项反映了 NSF 的法定使命,并被认为值得支持通过使用基金会的智力优点和更广泛的影响审查标准进行评估。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Priority-Based Autonomous Intersection Management (AIM) Scheme for Connected Automated Vehicles (CAVs)
  • DOI:
    10.3390/vehicles3030032
  • 发表时间:
    2021-08
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    Hui Zhang;Rongqing Zhang;Chen Chen-Chen;Dongliang Duan;Xiang Cheng;Liuqing Yang
  • 通讯作者:
    Hui Zhang;Rongqing Zhang;Chen Chen-Chen;Dongliang Duan;Xiang Cheng;Liuqing Yang
Identifying Dependent Annotators in Crowdsourcing
识别众包中的依赖注释器
Hierarchical Traffic Flow Prediction Based on Spatial-Temporal Graph Convolutional Network
基于时空图卷积网络的分层交通流预测
Bayesian Optimization for Task Offloading and Resource Allocation in Mobile Edge Computing
Bayesian Self-Supervised Learning Using Local and Global Graph Information
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Georgios Giannakis其他文献

Georgios Giannakis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Georgios Giannakis', 18)}}的其他基金

Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
  • 批准号:
    2332173
  • 财政年份:
    2024
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
  • 批准号:
    2312547
  • 财政年份:
    2023
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Continuing Grant
IMR: MM-1C: Learning-driven Models for 5G Internet Measurements
IMR:MM-1C:5G 互联网测量的学习驱动模型
  • 批准号:
    2220292
  • 财政年份:
    2022
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
  • 批准号:
    2128593
  • 财政年份:
    2021
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
CCSS: Online Learning for IoT Monitoring and Management
CCSS:物联网监控和管理在线学习
  • 批准号:
    2126052
  • 财政年份:
    2021
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Hybrid mmWave mMIMO Transceiver Design for Doubly-Selective Channels
适用于双选通道的混合毫米波 mMIMO 收发器设计
  • 批准号:
    2102312
  • 财政年份:
    2020
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
CIF: Medium: Adaptive Diffusions for Scalable and Robust Learning over Graphs
CIF:中:用于图上可扩展和鲁棒学习的自适应扩散
  • 批准号:
    1901134
  • 财政年份:
    2019
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Learn-and-Adapt to Manage Dynamic Cyber-Physical Networks
CCSS:协作研究:学习和适应管理动态信息物理网络
  • 批准号:
    1711471
  • 财政年份:
    2017
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
CCSS: Collaborative Research: Smart-Grid Powered Green Communications in Heterogeneous Networks
CCSS:协作研究:异构网络中智能电网驱动的绿色通信
  • 批准号:
    1508993
  • 财政年份:
    2015
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
  • 批准号:
    1500713
  • 财政年份:
    2015
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322534
  • 财政年份:
    2024
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
  • 批准号:
    2322533
  • 财政年份:
    2024
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Physics-Model-Based Neural Networks Redesign for CPS Learning and Control
合作研究:CPS:中:基于物理模型的神经网络重新设计用于 CPS 学习和控制
  • 批准号:
    2311084
  • 财政年份:
    2023
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
CPS: Medium: Collaborative Research: Provably Safe and Robust Multi-Agent Reinforcement Learning with Applications in Urban Air Mobility
CPS:中:协作研究:可证明安全且鲁棒的多智能体强化学习及其在城市空中交通中的应用
  • 批准号:
    2312092
  • 财政年份:
    2023
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
Collaborative Research: CPS: Medium: Enabling Data-Driven Security and Safety Analyses for Cyber-Physical Systems
协作研究:CPS:中:为网络物理系统实现数据驱动的安全和安全分析
  • 批准号:
    2414176
  • 财政年份:
    2023
  • 资助金额:
    $ 95.83万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了