CIF: Medium: Adaptive Diffusions for Scalable and Robust Learning over Graphs
CIF:中:用于图上可扩展和鲁棒学习的自适应扩散
基本信息
- 批准号:1901134
- 负责人:
- 金额:$ 70.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-10-01 至 2023-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Behind every complex system, be it physical, social, biological, or manmade, lies an intricate network that encodes the interactions between its components. Statistical learning over networks has the potential to unleash one's ability to reason about the behavior of such systems; to understand their innate structure; and, ultimately predict their evolution. In the era of 'data deluge,' fulfilling this promise has not moved closer, as formidable challenges remain. These include making effective predictions while relying on scarce training samples; providing easily explainable outcomes in a transparent way; dealing with unreliable data or malicious attempts to undermine the learning process; as well as managing to handle massive-scale networks that can change over time in a timely and resource-considerate fashion. Aspiring to address such challenges, this project pioneers a scalable, expressive, interpretable, and robust multi-purpose framework for learning over networks. The toolbox to be developed is expected to boost state-of-the-art in data science, network science, graph mining, and big data analytics. It should thus impact and effect technology transfer to a broad range of emerging fields, from computational biology and neuroscience to social-economic networks. On the educational front, the multidisciplinary nature of this research will provide engaging experiences for both undergraduate and graduate students, disseminate research findings, and cross-fertilize ideas from diverse communities.The overarching approach in this project unifies learning over graphs under a principled framework of random walk based diffusions with the goal of markedly improving learning performance, while also ensuring scalability and reliability. The research consists of three intertwined thrusts dealing with: (T1) Adaptive diffusions for fast and effective learning over networks tuned to the task and the underlying network topology; (T2) Scalable diffusions dealing with massive and challenging networks; and (T3) Robust diffusions capable of learning from untrusted data. The novel approach in T1 capitalizes on the 'landing probabilities' of judiciously constructed random walks, and opens venues leveraging meta-information, as well as nonlinear diffusion models, in order to innovate a gamut of learning tasks over possibly dynamic graphs. The research under T2 aims at massive and challenging graphs where a prohibitively large landing probability space is necessary to ensure high prediction accuracy. Finally, T3 aspires to cope with sophisticated adversaries employing graph structure-aware approaches to infiltrate the network, and investigates lines of defense even in settings where most data are malicious. Analytical and experimental performance evaluation will assess the merits of the novel approaches relative to node embedding and graph convolutional neural network alternatives.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在每个复杂系统的背后,无论是物理,社会,生物学还是人造的,都是一个复杂的网络,该网络编码其组件之间的相互作用。网络上的统计学习有可能释放一个人对此类系统行为的推理的能力;了解他们的先天结构;并且,最终预测了它们的演变。在“数据洪水”的时代,履行这一诺言并没有更加紧密,因为仍然存在巨大的挑战。这些包括在依靠稀缺训练样本的同时做出有效的预测;以透明的方式提供易于解释的结果;处理不可靠的数据或恶意尝试破坏学习过程;以及设法处理大规模的网络,这些网络可以随着时间的流逝而改变,以及时和资源考虑。为了应对这些挑战,该项目开创了一个可扩展,表现力,可解释和强大的多功能框架,用于通过网络学习。预计要开发的工具箱将促进数据科学,网络科学,图形挖掘和大数据分析方面的最先进。因此,它应该影响和影响技术转移到从计算生物学和神经科学到社会经济网络的广泛新兴领域。在教育方面,这项研究的跨学科性质将为本科生和研究生提供引人入胜的经验,传播研究结果,并从不同社区中的思想进行交叉剥夺。该项目中的总体方法可以在基于随机步行的范围内的图表上进行学习,从而在基于随机步行的框架下具有明显的基于步行的范围,同时提高了学习的性能,同时又可以提高学习性能,并可靠地进行性能,并可靠地进行性能。该研究由三个相互交织的推力组成:(T1)自适应扩散,用于对任务和基础网络拓扑的网络的快速有效学习; (T2)涉及大量和具有挑战性的网络的可扩展扩散; (T3)能够从不受信任的数据中学习的强大扩散。 T1中的新颖方法利用了明智地构建的随机步行的“着陆概率”,并打开了利用元信息以及非线性扩散模型的场所,以创新一系列学习任务,超过可能动态图。 T2下的研究旨在实现巨大而挑战性的图表,在这些图表中,有必要大大的着陆概率空间以确保高预测准确性。最后,T3渴望应对采用图形结构感知方法渗透网络的复杂对手,即使在大多数数据是恶意的情况下,也可以调查防御线。分析和实验性能评估将评估相对于节点嵌入和图形卷积神经网络替代方案的新方法的优点。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估来评估值得支持的。
项目成果
期刊论文数量(69)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Learning Graph Processes with Multiple Dynamical Models
- DOI:10.1109/ieeeconf44664.2019.9048993
- 发表时间:2019-11
- 期刊:
- 影响因子:0
- 作者:Qin Lu;V. Ioannidis;G. Giannakis;M. Coutiño
- 通讯作者:Qin Lu;V. Ioannidis;G. Giannakis;M. Coutiño
Deep Policy Gradient for Reactive Power Control in Distribution Systems
- DOI:10.1109/smartgridcomm47815.2020.9302996
- 发表时间:2020-11
- 期刊:
- 影响因子:0
- 作者:Qiuling Yang;A. Sadeghi;Gang Wang;G. Giannakis;Jian Sun-
- 通讯作者:Qiuling Yang;A. Sadeghi;Gang Wang;G. Giannakis;Jian Sun-
Graph-Adaptive Semi-Supervised Tracking of Dynamic Processes Over Switching Network Modes
- DOI:10.1109/tsp.2020.2984889
- 发表时间:2020
- 期刊:
- 影响因子:5.4
- 作者:Qin Lu;V. Ioannidis;G. Giannakis
- 通讯作者:Qin Lu;V. Ioannidis;G. Giannakis
Efficient and Stable Graph Scattering Transforms via Pruning
- DOI:10.1109/tpami.2020.3025258
- 发表时间:2020-01
- 期刊:
- 影响因子:23.6
- 作者:V. Ioannidis;Siheng Chen;G. Giannakis
- 通讯作者:V. Ioannidis;Siheng Chen;G. Giannakis
Bayesian Constrained Decision Fusion
贝叶斯约束决策融合
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:P. A. Traganitis, G. B.
- 通讯作者:P. A. Traganitis, G. B.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Georgios Giannakis其他文献
Georgios Giannakis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Georgios Giannakis', 18)}}的其他基金
Collaborative Research: ECCS-CCSS Core: Resonant-Beam based Optical-Wireless Communication
合作研究:ECCS-CCSS核心:基于谐振光束的光无线通信
- 批准号:
2332173 - 财政年份:2024
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Robust Learning over Graphs
协作研究:CIF:媒介:图上的鲁棒学习
- 批准号:
2312547 - 财政年份:2023
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant
IMR: MM-1C: Learning-driven Models for 5G Internet Measurements
IMR:MM-1C:5G 互联网测量的学习驱动模型
- 批准号:
2220292 - 财政年份:2022
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: SWIFT: Cognitive-IoV with Simultaneous Sensing and Communications via Dynamic RF Front End
合作研究:SWIFT:通过动态射频前端实现同步传感和通信的认知车联网
- 批准号:
2128593 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
CCSS: Online Learning for IoT Monitoring and Management
CCSS:物联网监控和管理在线学习
- 批准号:
2126052 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Hybrid mmWave mMIMO Transceiver Design for Doubly-Selective Channels
适用于双选通道的混合毫米波 mMIMO 收发器设计
- 批准号:
2102312 - 财政年份:2020
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
CPS: Medium: Collaborative Research: Collective Intelligence for Proactive Autonomous Driving (CI-PAD)
CPS:中:协作研究:主动自动驾驶集体智慧 (CI-PAD)
- 批准号:
2103256 - 财政年份:2020
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Learn-and-Adapt to Manage Dynamic Cyber-Physical Networks
CCSS:协作研究:学习和适应管理动态信息物理网络
- 批准号:
1711471 - 财政年份:2017
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
CCSS: Collaborative Research: Smart-Grid Powered Green Communications in Heterogeneous Networks
CCSS:协作研究:异构网络中智能电网驱动的绿色通信
- 批准号:
1508993 - 财政年份:2015
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
EAGER-DynamicData: Judicious Censoring, Random Sketching, and Efficient Validate for Learning Patterns from Dynamically-Changing and Large-Scale Data Sets
EAGER-DynamicData:明智的审查、随机草图和高效验证,用于从动态变化的大规模数据集中学习模式
- 批准号:
1500713 - 财政年份:2015
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
相似国自然基金
复合低维拓扑材料中等离激元增强光学响应的研究
- 批准号:12374288
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
基于管理市场和干预分工视角的消失中等企业:特征事实、内在机制和优化路径
- 批准号:72374217
- 批准年份:2023
- 资助金额:41.00 万元
- 项目类别:面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
- 批准号:12371432
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
中等质量黑洞附近的暗物质分布及其IMRI系统引力波回波探测
- 批准号:12365008
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
- 批准号:42305004
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
- 批准号:
2241298 - 财政年份:2022
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
- 批准号:
2106881 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
- 批准号:
2106467 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: An Information-Theoretic Foundation for Adaptive Bidding in First-Price Auctions
合作研究:CIF:媒介:一价拍卖中自适应出价的信息理论基础
- 批准号:
2106508 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: Structured Inference and Adaptive Measurement Design in Indirect Sensing Systems
合作研究:CIF:媒介:间接传感系统中的结构化推理和自适应测量设计
- 批准号:
2106834 - 财政年份:2021
- 资助金额:
$ 70.22万 - 项目类别:
Continuing Grant