CHS: Small: Collaborative Research: Validating and Communiciating Model-Based Approaches for Data Visualization Ability Assessment

CHS:小型:协作研究:验证和交流基于模型的数据可视化能力评估方法

基本信息

  • 批准号:
    2120750
  • 负责人:
  • 金额:
    $ 23.88万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-10-01 至 2023-08-31
  • 项目状态:
    已结题

项目摘要

People are encountering graphs, charts, and other visual representations of data now more than ever before. Yet creators of these visualizations currently must reason with sparse and conflicting evidence on how well people can read the visualizations they publish. Current guidelines do not take into account the possibility that different people have different strengths and weaknesses when interpreting visual data. This project will use studies of visualization effectiveness to inform our understanding of the abilities and biases of viewers, both individually and collectively. To do this, the project team will use a combination of experiments, statistical modeling, and interview studies to both challenge long-standing assumptions about visualization effectiveness, and to lay a foundation for future experiments that account for differences in visualization reading ability. The work will also support a broader educational goal of using robust statistical modeling techniques in experimentation, through course modules that can be integrated into existing data visualization courses, and through outreach activities that allow individuals to see how well they perform visualization tasks compared to others who have taken the experiments.This work seeks to answer three primary research questions. The first is to determine the extent to which individuals differ in their ability to perform basic tasks with data visualizations, through large-scale crowdsourced experiments that use transparent statistical methodologies to establish individual differences in data visualization performance. The second question evaluates the relationship between low-level visualization performance and higher-level assessments such as visualization literacy and cognitive abilities, recruiting both expert and novice populations to evaluate the extent to which these hypothesized measures of visualization literacy correlate with each other. The third question determines how alternative ways of presenting visualization experiment results shape the design recommendations researchers and designers draw from them, through a comparative evaluation of longstanding ways of presenting visualization experiment results, and by designing new ways of presenting results that may lead to more mature interpretation of experiment results by broader visualization community. The work will provide new perspectives on visualization literacy by augmenting chart reading experiments with novel measures of visualization ability, and by studying how creators currently make use of existing visualization design guidelines in their design process.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人们现在比以往任何时候都更遇到数据的图形,图表和其他视觉表示。然而,目前,这些可视化的创建者必须通过稀疏而相互矛盾的证据来理解人们如何阅读他们发布的可视化。 当前的指南没有考虑到不同人在解释视觉数据时具有不同优势和劣势的可能性。该项目将使用可视化有效性的研究来了解我们对观众的能力和偏见的理解,无论是单独还是集体的。 为此,项目团队将使用实验,统计建模和访谈研究的组合来挑战有关可视化效果的长期假设,并为未来的实验奠定基础,以说明可视化阅读能力的差异。这项工作还将支持一个更广泛的教育目标,即通过可以将可以集成到现有数据可视化课程中的课程模块进行实验中,并通过宣传活动使个人看到与其他实验的其他人相比执行可视化任务的能力。这些工作人员寻求三个主要研究问题。首先是通过大规模众包实验使用透明的统计方法来确定数据可视化性能的个体差异,从而确定个人通过数据可视化执行基本任务的能力的程度。第二个问题评估了低级可视化绩效与高级评估(例如可视化素养和认知能力)之间的关系,招募了专家和新手人群,以评估这些假设的可视化素养指标相互关联的程度。第三个问题确定了展示可视化实验结果的替代方法如何塑造设计建议研究人员从他们那里汲取的设计建议,并通过对展示可视化实验结果的长期评估以及设计新的方法来提出可能导致更成熟的结果来通过更广泛的可视化社区来对实验结果进行更成熟的解释。这项工作将通过以新颖的可视化能力度量来增强图表阅读实验,并研究创作者目前如何利用现有的可视化设计指南,以通过其设计过程中使用现有的可视化设计指南来提供有关可视化素养的新观点。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和广泛的影响来评估CRETERIA的评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matthew Kay其他文献

TaxaHFE: A machine learning approach to collapse microbiome datasets using taxonomic structure
TaxaHFE:一种使用分类结构折叠微生物组数据集的机器学习方法
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Oliver;Matthew Kay;D. Lemay
  • 通讯作者:
    D. Lemay
There's no such thing as gaining a pound: reconsidering the bathroom scale user interface
体重增加是不存在的:重新考虑浴室秤的用户界面
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Kay;Dan Morris;M. Schraefel;J. Kientz
  • 通讯作者:
    J. Kientz
CALVI: Critical Thinking Assessment for Literacy in Visualizations
CALVI:可视化素养的批判性思维评估
tidybayes: Tidy Data and Geoms for Bayesian Models
  • DOI:
    10.5281/zenodo.3629863
  • 发表时间:
    2020-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Matthew Kay
  • 通讯作者:
    Matthew Kay
“Choose-your-own” D3 labs for learning to adapt online code
“选择您自己的”D3 实验室,用于学习改编在线代码

Matthew Kay的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matthew Kay', 18)}}的其他基金

CHS: Small: Developing a Probabilistic Grammar of Graphics for Flexible Uncertainty Visualization
CHS:小:开发图形的概率语法以实现灵活的不确定性可视化
  • 批准号:
    2126598
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CHS: Small: Developing a Probabilistic Grammar of Graphics for Flexible Uncertainty Visualization
CHS:小:开发图形的概率语法以实现灵活的不确定性可视化
  • 批准号:
    1910431
  • 财政年份:
    2019
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Validating and Communiciating Model-Based Approaches for Data Visualization Ability Assessment
CHS:小型:协作研究:验证和交流基于模型的数据可视化能力评估方法
  • 批准号:
    1815790
  • 财政年份:
    2018
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于超宽频技术的小微型无人系统集群协作关键技术研究与应用
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    57 万元
  • 项目类别:
    面上项目
异构云小蜂窝网络中基于协作预编码的干扰协调技术研究
  • 批准号:
    61661005
  • 批准年份:
    2016
  • 资助金额:
    30.0 万元
  • 项目类别:
    地区科学基金项目
密集小基站系统中的新型接入理论与技术研究
  • 批准号:
    61301143
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
ScFVCD3-9R负载Bcl-6靶向小干扰RNA治疗EAMG的试验研究
  • 批准号:
    81072465
  • 批准年份:
    2010
  • 资助金额:
    31.0 万元
  • 项目类别:
    面上项目
基于小世界网络的传感器网络研究
  • 批准号:
    60472059
  • 批准年份:
    2004
  • 资助金额:
    21.0 万元
  • 项目类别:
    面上项目

相似海外基金

CHS: Small: Collaborative Research: Shared Mobility Systems to Address Transportation Barriers of Underserved Urban and Rural Communities
CHS:小型:合作研究:共享出行系统,解决服务不足的城乡社区的交通障碍
  • 批准号:
    1910281
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Optimizing the Human-Machine System for Citizen Science
CHS:小型:协作研究:优化公民科学的人机系统
  • 批准号:
    2006400
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research:Dynamic Computer-Aided Machining: Supporting Interactive Workflows for Digital Fabrication and Manufacturing
CHS:小型:协作研究:动态计算机辅助加工:支持数字制造和制造的交互式工作流程
  • 批准号:
    2007045
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
CHS: Small: Collaborative Research: Learning Maker Skills By Building Game Props
CHS:小型:协作研究:通过构建游戏道具来学习创客技能
  • 批准号:
    2008028
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Standard Grant
CHS: Small: Collaborative Research: Catalyzing Youth Civic Engagement Through Innovations in Social Computing
CHS:小型:合作研究:通过社会计算创新促进青年公民参与
  • 批准号:
    2054741
  • 财政年份:
    2020
  • 资助金额:
    $ 23.88万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了