Learning-Aided Integrated Control and Semantic Perception Architecture for Legged Robot Locomotion and Navigation in the Wild
用于腿式机器人野外运动和导航的学习辅助集成控制和语义感知架构
基本信息
- 批准号:2118818
- 负责人:
- 金额:$ 98.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
This project develops an open-source system to allow legged robots to perform autonomous exploration and environmental monitoring in unstructured environments, such as in a forest. A central theme is the design and deployment of a unified and integrated framework that exploits the redundancy of onboard sensory modalities and cross-integrates with feedback control and planning. The project seeks major advances in control theory, computer vision, embedded systems, and planning under uncertainty, areas that are often studied in isolation. By studying these areas as a systems problem, the researchers expect significant advances for autonomous systems in unstructured environments. The results of the research are demonstrated on a Digit-series 3D biped and a Mini Cheetah quadruped robot. The research elevates the state of the art in deploying autonomous mobile robots “in the wild.” In off-road and unstructured settings, the main technique currently employed by the autonomous vehicle industry, registering into known high-definition maps on the basis of collected sensor measurements, is not possible and adversely affects autonomy. The project develops a real-time multi-layer dense semantic occupancy mapping with an extended set of terrain labels and a “walk-ability” index combined with an integrated motion planner for an autonomous system. The traversability map enables a walking robot to make dynamic real-time planning and feedback control decisions, adjusting for gait characteristics and for precise foot placement based on the surrounding terrain and environment.The principal investigators are co-developing a freshman college course to inspire students by teaching how practicing engineers employ computational linear algebra to solve large and important problems as arise in the study of autonomous robots. Course projects are selected from contemporary topics in robotics such as, for example, map building from LiDAR point clouds, machine learning for spatial representation of data, and feedback control of mobile platforms. In addition, the project engages in outreach to underrepresented communities through collaborative educational instruction in STEM fields in Detroit public high schools.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目开发了一个开源系统,允许腿式机器人在非结构化环境(例如森林)中进行自主探索和环境监测,其中心主题是设计和部署一个统一的集成框架,利用机载传感器的冗余。研究人员通过将这些领域作为系统问题进行研究,寻求控制理论、计算机视觉、嵌入式系统和不确定性规划方面的重大进展。预计取得重大进展该研究的结果在 Digit 系列 3D 双足机器人和 Mini Cheetah 四足机器人上进行了演示,该研究提升了“野外”部署自主移动机器人的技术水平。道路和非结构化环境是自动驾驶汽车行业目前采用的主要技术,即根据收集的传感器测量结果注册到已知的高清地图中,这是不可能的,并且会对自动驾驶产生不利影响。多层密集语义占用映射,具有扩展的地形标签集和“步行能力”指数,与自主系统的集成运动规划器相结合。可遍历性地图使步行机器人能够进行动态实时规划和反馈控制。决定,根据周围的地形和环境调整步态特征和精确的足部位置。主要研究人员正在共同开发一门大学新生课程,通过教授实践工程师如何利用计算线性代数来解决出现的大型和重要问题来启发学生在自治研究中课程项目选自机器人技术的当代主题,例如从激光雷达点云构建地图、数据空间表示的机器学习以及移动平台的反馈控制。此外,该项目还致力于向代表性不足的社区进行推广。通过底特律公立高中 STEM 领域的协作教育指导。该项目得到了机器人学跨部门基础研究项目的支持,该项目由工程部 (ENG) 以及计算机和信息科学与工程部共同管理和资助(CISE)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimal Target Shape for LiDAR Pose Estimation
- DOI:10.1109/lra.2021.3138779
- 发表时间:2022-04-01
- 期刊:
- 影响因子:5.2
- 作者:Huang, Jiunn-Kai;Clark, William;Grizzle, Jessy W.
- 通讯作者:Grizzle, Jessy W.
Energy-Based Legged Robots Terrain Traversability Modeling via Deep Inverse Reinforcement Learning
- DOI:10.1109/lra.2022.3188100
- 发表时间:2022-07
- 期刊:
- 影响因子:5.2
- 作者:Lu Gan;J. Grizzle;R. Eustice;Maani Ghaffari
- 通讯作者:Lu Gan;J. Grizzle;R. Eustice;Maani Ghaffari
Efficient Anytime CLF Reactive Planning System for a Bipedal Robot on Undulating Terrain
- DOI:10.1109/tro.2022.3228713
- 发表时间:2023-01-06
- 期刊:
- 影响因子:7.8
- 作者:Huang, Jiunn-Kai;Grizzle, Jessy W.
- 通讯作者:Grizzle, Jessy W.
Nonparametric continuous sensor registration
非参数连续传感器配准
- DOI:
- 发表时间:2021
- 期刊:
- 影响因子:6
- 作者:Clark, W.;Ghaffari, M.;Bloch, A.
- 通讯作者:Bloch, A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jessy Grizzle其他文献
Jessy Grizzle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jessy Grizzle', 18)}}的其他基金
Combining Optimization, Machine Learning, and Model Structure to Improve the Robustness and Agility of Modern Bipedal Machines
结合优化、机器学习和模型结构,提高现代双足机器的鲁棒性和敏捷性
- 批准号:
1808051 - 财政年份:2018
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant
NRI: Collaborative Research: Unified Feedback Control and Mechanical Design for Robotic, Prosthetic, and Exoskeleton Locomotion
NRI:协作研究:机器人、假肢和外骨骼运动的统一反馈控制和机械设计
- 批准号:
1525006 - 财政年份:2015
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant
INSPIRE Track 1: The Mathematics of Balance in Mechanical Systems with Impacts, Unilateral Constraints, Underactuation and Hyper-sensing: Application to Agile bipedal Locomotion
INSPIRE 轨道 1:具有冲击、单侧约束、欠驱动和超感知的机械系统中的平衡数学:在敏捷双足运动中的应用
- 批准号:
1343720 - 财政年份:2013
- 资助金额:
$ 98.64万 - 项目类别:
Continuing Grant
CPS: Frontier: Collaborative Research: Correct-by-Design Control Software Synthesis for Highly Dynamic Systems
CPS:前沿:协作研究:高动态系统的设计正确控制软件综合
- 批准号:
1239037 - 财政年份:2013
- 资助金额:
$ 98.64万 - 项目类别:
Continuing Grant
Feedback Control of Highly Dynamic Spatial Locomotion in 3D Bipedal Robots
3D 双足机器人高动态空间运动的反馈控制
- 批准号:
1231171 - 财政年份:2012
- 资助金额:
$ 98.64万 - 项目类别:
Continuing Grant
Analytical and Experimental Investigations of Feedback Control Designs for Bipedal Walkers and Runners
双足步行者和跑步者反馈控制设计的分析和实验研究
- 批准号:
0856213 - 财政年份:2009
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant
EAGER: Insulin Delivery for Diabetes Management in the Intensive Care Unit as a Feedback Control Problem
EAGER:重症监护病房糖尿病管理中的胰岛素输送作为反馈控制问题
- 批准号:
0938288 - 财政年份:2009
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant
Hybrid Control for Agility and Efficiency in Bipedal Robots with Compliance
混合控制可提高双足机器人的灵活性和效率并具有合规性
- 批准号:
0600869 - 财政年份:2006
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant
Feedback Control Design for Bipedal Robots
双足机器人反馈控制设计
- 批准号:
0322395 - 财政年份:2003
- 资助金额:
$ 98.64万 - 项目类别:
Continuing Grant
相似国自然基金
基于多源数据融合与深度学习的冠心病辅助诊疗关键技术研究
- 批准号:62372269
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
理论指导的融合辅助信息的自监督学习研究
- 批准号:62376010
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
融合专家知识和深度学习的心肌梗死早期辅助诊断研究
- 批准号:62303427
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于异构数据融合及脑网络构建的阿尔兹海默病早期诊断关键技术
- 批准号:61902058
- 批准年份:2019
- 资助金额:29.0 万元
- 项目类别:青年科学基金项目
融合增强型生成对抗网络和医学影像的CSM智能辅助诊断关键技术研究
- 批准号:61872351
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
- 批准号:
10511853 - 财政年份:2022
- 资助金额:
$ 98.64万 - 项目类别:
Computer aided solvent design to minimise solvent use in integrated synthesis, purification & isolation for sustainable pharmaceutical manufacturing
计算机辅助溶剂设计,最大限度地减少集成合成、纯化中的溶剂使用
- 批准号:
EP/W01923X/1 - 财政年份:2022
- 资助金额:
$ 98.64万 - 项目类别:
Research Grant
[R21] Integrated computer-aided, point-of-care ultrasound for tuberculosis screening
[R21] 用于结核病筛查的集成计算机辅助床旁超声
- 批准号:
10647808 - 财政年份:2022
- 资助金额:
$ 98.64万 - 项目类别:
Computer-Aided Design for High-Performance Large-Scale Integrated Circuits
高性能大规模集成电路的计算机辅助设计
- 批准号:
RGPIN-2020-04186 - 财政年份:2022
- 资助金额:
$ 98.64万 - 项目类别:
Discovery Grants Program - Individual
Excellence in Research: Aptamer integrated graphene-gold conjugates for machine learning aided pesticide residue screening
卓越研究:适体集成石墨烯-金缀合物,用于机器学习辅助农药残留筛查
- 批准号:
2100930 - 财政年份:2021
- 资助金额:
$ 98.64万 - 项目类别:
Standard Grant