Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
基本信息
- 批准号:2116646
- 负责人:
- 金额:$ 136.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Catalytic materials have long been used to improve the efficiency and product selectivity of many processes of vital importance to chemical manufacturing, petroleum refining, and pollution control. Given the complexity of catalytic reactions, and the need for the catalyst to operate under harsh conditions in many cases, considerable development effort – particularly from industry - has gone into the design of catalyst materials that can be readily synthesized, and that maintain stable performance for long time-on-stream. Academic research efforts, in contrast, have largely focused on theoretical, computational, and experimental identification of more active and/or lower-cost catalytic materials, but with little attention to synthesizability and stability. The project creates a new catalytic materials research framework that combines the search for more active materials with screening for synthesizability and stability under reaction conditions. The added complexity is addressed through the addition of powerful machine learning (ML) approaches that augment theoretical and computational tools to yield a more complete set of properties, or “descriptors,” associated with synthesizable, highly active, and stable catalytic materials. Ultimately, the goal is to package the various discovery tools in the form of an intuitive approach that delivers optimal results for catalysis practitioners. The project builds on the widely practiced descriptor approach to catalysis research, where a descriptor of catalytic activity (e.g., adsorption energy of an adsorbate) is computed using quantum chemical Density Functional Theory (DFT) calculations on various catalyst surfaces. Research efforts extend the current approaches by developing synthesizability, stability, and activity descriptors, using ML tools to rapidly screen through these descriptors, and collaborating with experimentalists in an iterative feedback loop to examine the accuracy of the predictions and to ensure the “catalysis practitioner-friendliness” of the combined methods. The approach will be developed in two case studies focusing on bimetallic catalysts for low temperature preferential CO oxidation in the presence of H2 (CO PROX) and partial oxidation of ethylene to ethylene oxide. The project will create a computer-aided workflow and open-source tools for predicting the synthesizability, activity, and stability of catalysts. By combining ML and DFT modeling with operando experimental characterization and testing, new structure-function relations will be identified for both reactions. In doing so, ML methods will advance beyond the prediction of activity for highly idealized systems to more realistic catalytic systems under operating conditions. Predicted materials structures and compositions will be validated against open-source high-fidelity experimental datasets in a feedback discovery loop that accelerates catalyst discovery. Beyond the technical component, the project will include outreach efforts focused on student professional development, broadened science participation, and informal science communication to help create a world-class scientific workforce. Cross-disciplinary training activities at the University of Michigan (U-M) and Wayne State University (WSU) will provide graduate and undergraduate students with a foundation to continue making scientific advances throughout their careers. A Data Science for Catalysis Training Program will enable undergraduates from WSU to visit U-M during the summer to learn the basics of data science and catalysis. Underrepresented students from Detroit schools, and their parents, will engage in science outreach events hosted by team members.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在许多情况下,催化材料已用于许多URING,石油炼油和拨造离子的效率和产品选择性,尤其是行业的发展努力 - 已经进入了催化剂材料的设计相比之下,加速性研究的稳定性在很大程度上集中在计算上。在反应条件下,搜索量具有更大的动力性,并在反应条件下进行了稳定性和稳定性。材料最终,正式的各种发现工具的催化作用结果最佳结果。在迭代反馈循环中,在两个案例研究中,将开发出对综合方法的实践者液化的行为。 CO Prox)和氧化乙烷的部分氧化将确定两个反应的功能。帮助创建一个班级科学劳动力。催化培训计划将使WSU的本科生能够访问U-M Dammer到Data Science和Meatsy School的研究。审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Interpretable machine learning for knowledge generation in heterogeneous catalysis
- DOI:10.1038/s41929-022-00744-z
- 发表时间:2022-03-17
- 期刊:
- 影响因子:37.8
- 作者:Esterhuizen, Jacques A.;Goldsmith, Bryan R.;Linic, Suljo
- 通讯作者:Linic, Suljo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suljo Linic其他文献
Suljo Linic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suljo Linic', 18)}}的其他基金
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
- 批准号:
1803991 - 财政年份:2018
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
- 批准号:
1800197 - 财政年份:2018
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
- 批准号:
1702471 - 财政年份:2017
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1362120 - 财政年份:2014
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
- 批准号:
1436056 - 财政年份:2014
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting
等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究
- 批准号:
1437601 - 财政年份:2014
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
- 批准号:
1115990 - 财政年份:2011
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
- 批准号:
1132777 - 财政年份:2011
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1111770 - 财政年份:2011
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
相似国自然基金
离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
- 批准号:52364012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
- 批准号:32301770
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
- 批准号:52302362
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
- 批准号:72302108
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
- 批准号:32300133
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 136.75万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 136.75万 - 项目类别:
Standard Grant