DMREF/Collaborative Research: Computationally Guided Design of Multicomponent Materials for Electrocatalytic Cascade Reactions
DMREF/合作研究:用于电催化级联反应的多组分材料的计算引导设计
基本信息
- 批准号:1436056
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-09-01 至 2020-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In order to support world needs, we depend on certain commercial reaction systems that consume a significant fraction of the world's energy resources, such as for the production of ammonia fertilizers from nitrogen gas. This is because one single catalyst material is not optimal for all the elementary reaction steps that are required for a conversion. The current catalyst system is the best compromise, but is inefficient. Improving upon this energy-costly situation through application of new catalyst materials is a daunting challenge, however. Under the National Science Foundation initiative titled Designing Materials to Revolutionize and Engineer our Future, an award is being made to a collaborative team of Profs. Michael Janik (Pennsylvania State University), Suljo Linic (University of Michigan), Will Medlin (University of Colorado) and Eranda Nikolla (Wayne State University) to develop new multicomponent catalyst materials that will allow greater efficiency in energy-demanding reaction schemes. The research team proposes that new cascade catalyst materials be prepared by nanoscale synthesis techniques to link the multiple components that have different functions in an overall reaction. Close linking of these catalytic material components, in principle, can reduce the formation of unwanted and environmentally hazardous byproducts and decrease the required energy input for necessary chemical reactions. While the research team has demonstrated the concepts required to construct the individual catalyst features required for this approach, predictive models are needed to guide the design of how to link these components to result in an improved process. This project will develop the multi-scale models necessary to design complex catalyst assemblies. These models will be validated and refined through experimental testing of catalyst materials defined by computational designs. An alternative approach to catalytic conversion will be developed using multi-component, multi-active site materials. Communication between active sites will be controlled by the selective transport of energetic intermediates. A computationally-guided design framework will 1) utilize atomistic and electronic structure methods to optimize individual catalytic components, and 2) construct a coupled microkinetic/transport model to guide construction of the multi-component material. Synthesis, fabrication, characterization, and reactivity studies will validate computational models and realize the enhancements offered by the catalysts. Initial catalyst development efforts will concentrate on ammonia synthesis, using one site to generate active proton and electron intermediates that transport to a second site to reduce nitrogen. Transferability of the design approach will be demonstrated by applying it to design cascades for selective oxidation of biomass-derived species in alkaline systems. The computationally guided design of inorganic catalytic cascade systems will both demonstrate the potential of these multi-component materials to provide efficient catalytic processes and provide a design framework for rapid acceleration of their development. The research will be integrated with educational and outreach activities to broaden the impact of the proposed work. Undergraduate researchers drawn from programs that target underrepresented groups will be integrated into research efforts at the four partner institutions, involving these students in multi-disciplinary work with exposure to the collaborative team. Research groups at each institution will participate in science outreach activities targeted at preschool through K-12 groups, such as Central Pennsylvania's "Exploration Days" and the Michigan Science Center's "Ask the Expert" series. The collaborative group plan coordinated course offerings among the partner institutions, which will provide opportunities for collaborative teaching, specifically aimed at integrating active learning tools at all the institutions.
为了满足世界需求,我们依靠某些食用世界能源很大一部分的商业反应系统,例如用氮气生产氨肥料。这是因为一种单个催化剂材料对于转换所需的所有基本反应步骤都不是最佳的。当前的催化剂系统是最好的妥协,但效率低下。然而,通过应用新的催化剂材料来改善这种能源成本的情况是一个艰巨的挑战。在国家科学基金会的倡议下,设计材料彻底改变了我们的未来,并向教授的合作团队颁发了一个奖项。迈克尔·贾尼克(Michael Janik)(宾夕法尼亚州立大学),Suljo Linic(密歇根大学),Will Medlin(科罗拉多大学)和Eranda Nikolla(Wayne State University)开发新的多组分催化剂材料,以提高能量效率的效率。研究小组建议,可以通过纳米级合成技术制备新的级联催化剂材料,以链接多个在整体反应中具有不同功能的组件。 原则上,这些催化材料成分的紧密连接可以减少不必要的和环境危险的副产品的形成,并减少必要的化学反应所需的能量输入。研究团队已经证明了构建此方法所需的单个催化剂特征所需的概念,但需要进行预测模型来指导如何将这些组件链接起来以实现改进的过程。该项目将开发设计复杂的催化剂组件所需的多尺度模型。 这些模型将通过对计算设计定义的催化剂材料的实验测试来验证和完善。将使用多组分的多组分位点材料开发催化转化的替代方法。活跃位点之间的通信将由能量中间体的选择性运输控制。计算引导的设计框架将1)利用原子和电子结构方法来优化单个催化成分,2)构建耦合的微动力/传输模型来指导多组分材料的构建。合成,制造,表征和反应性研究将验证计算模型并实现催化剂提供的增强。最初的催化剂开发工作将集中于氨合成,使用一个位点生成活性质子和电子中间体,这些质子将运输到第二个位点以减少氮。设计方法的可传递性将通过将其应用于设计级联反应,以选择碱性系统中生物质衍生物种的氧化。 无机催化级联系统的计算指导设计都将证明这些多组分材料提供有效的催化过程的潜力,并为快速加速其开发提供了设计框架。该研究将与教育和外展活动融合,以扩大拟议工作的影响。从针对代表性不足的群体的计划中获取的本科研究人员将纳入四个合作伙伴机构的研究工作,使这些学生参与多学科工作,并接触了协作团队。每个机构的研究小组将通过K-12小组参加针对学龄前的科学外展活动,例如宾夕法尼亚州中部的“探索日”和密歇根州科学中心的“询问专家”系列。合作小组计划在合作伙伴机构之间协调课程产品,该课程将为协作教学提供机会,专门旨在在所有机构中整合活跃的学习工具。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Design Principles for Directing Energy and Energetic Charge Flow in Multicomponent Plasmonic Nanostructures
- DOI:10.1021/acsenergylett.8b00841
- 发表时间:2018-07-01
- 期刊:
- 影响因子:22
- 作者:Chavez, Steven;Aslam, Umar;Linic, Suljo
- 通讯作者:Linic, Suljo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Suljo Linic其他文献
Suljo Linic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Suljo Linic', 18)}}的其他基金
CAS: Photocatalysis on Hybrid Plasmonic Materials
CAS:混合等离子体材料的光催化
- 批准号:
2349887 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Machine Learning-aided Discovery of Synthesizable, Active and Stable Heterogeneous Catalysts
合作研究:DMREF:机器学习辅助发现可合成、活性和稳定的多相催化剂
- 批准号:
2116646 - 财政年份:2021
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Maximizing efficiency in solar water splitting by engineering interfaces in hybrid photo-catalysts
通过混合光催化剂中的工程界面最大限度地提高太阳能水分解效率
- 批准号:
1803991 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Controlling the energy flow in multi-component plasmonic structures for selective catalysis
控制多组分等离子体结构中的能量流以实现选择性催化
- 批准号:
1800197 - 财政年份:2018
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
INFEWS N/P/H2O: Photo-thermal ammonia synthesis of plasmonic metal nanoparticles
INFEWS N/P/H2O:等离子体金属纳米粒子的光热氨合成
- 批准号:
1702471 - 财政年份:2017
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1362120 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Studies of the impact of plasmonic metal nano-particles on co-catalysts/semiconductor photocatalysts in solar water splitting
等离子体金属纳米颗粒对太阳能分解水助催化剂/半导体光催化剂影响的研究
- 批准号:
1437601 - 财政年份:2014
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Conference: Kokes Awards for the 20th North American Catalysis Society Meeting, Detroit, Michigan, June 5-10, 2011
会议:第 20 届北美催化学会会议 Kokes 奖,密歇根州底特律,2011 年 6 月 5 日至 10 日
- 批准号:
1115990 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Designing Efficient Platinum-Free Electrocatalysts for Oxygen Reduction Reaction
设计用于氧还原反应的高效无铂电催化剂
- 批准号:
1132777 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Heterogeneous Catalysis on Plasmonic Metallic Nanostructures: Selective Catalytic Conversion at Lower Temperatures co-Driven by Solar and Thermal Energy
等离激元金属纳米结构的多相催化:太阳能和热能共同驱动的较低温度下的选择性催化转化
- 批准号:
1111770 - 财政年份:2011
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
- 批准号:52305539
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
- 批准号:62371149
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
- 批准号:62362017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Predicting Molecular Interactions to Stabilize Viral Therapies
合作研究:DMREF:预测分子相互作用以稳定病毒疗法
- 批准号:
2325392 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Standard Grant