Collaborative Research: Charge Transport in Helicoidal Molecular Crystals
合作研究:螺旋分子晶体中的电荷传输
基本信息
- 批准号:2116183
- 负责人:
- 金额:$ 29.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-01 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Non-technical abstract Crystals are straight by definition. They have sharp edges and flat faces. They are polyhedra. However, molecular crystals that twist as they grow are remarkably common, albeit little known. More than one third of simple molecular crystals are capable of forming twisted morphologies. As a largely unexplored phenomenon, crystal twisting introduces a new dimension to materials design. Plastic electronic devices, e.g. foldable LCD screens, smart phones, computers, and solar panels, depend on the shapes of tiny crystals that carry electricity. This collaborative project, supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF, uncovers at a fundamental science level the effect of twisted morphologies on the propagation of electrical current and light through crystals comprising organic semiconductors in order to usher in the next age of personal consumer electronic devices as well as critical technologies associated with renewable energy. Early results show that twisting boosts conductivity. Outreach activities embracing literature, art, history, and education reflect the themes of crystals and chirality (items that can be distinguished from their mirror image are chiral, for example a hand) that undergird these scientific efforts, with a focus on using intriguing aspects of twisted crystals as a platform to engage K-12 students in STEM-related activities in the NY metro area. Technical AbstractHelicoidal crystals with pitches from 1-500 microns can carry charge when grown from molecules that form traditional organic semiconductors. At the level of devices, twisting on these length scales can have critical consequences on light propagation and charge injection, extraction and hopping. To elucidate the general effect of twisting on such processes, a series of semiconducting compounds are induced to twist as they crystallize from the melt into thin films as part of this collaborative research, which is supported by the Solid State and Materials Chemistry program in the Division of Materials Research at NSF. Conductive and photoconductive atomic force microscopy and charge mobility measurements using a field-effect transistor platform are performed on these helicoidal crystals as a function of pitch to determine the modulation of electric field- and photo-induced charge transport locally along and perpendicular to the twisting axes. As optoelectronic devices typically require specific crystal orientations within active layers for optimal performance, electrocrystallization is applied to molten organic conductors to collimate twisted crystals on electrode surfaces. Electrical magnetochiral anisotropy measurements, in conjunction with complete imaging polarimetry unique to the PIs' laboratories, are actualized in the search for chiral defects introduced via twisting. In doing so, this research uncovers fundamental mechanisms of crystal growth while addressing inherent limitations in the field of organic electronics, including large charge transport anisotropies along less accessible crystallographic directions and difficulties in tuning molecular interactions independent of molecular structure.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术抽象 根据定义,晶体是直的。它们具有锋利的边缘和平坦的表面。它们是多面体。然而,尽管鲜为人知,但在生长过程中扭曲的分子晶体却非常常见。超过三分之一的简单分子晶体能够形成扭曲的形态。作为一种很大程度上未被探索的现象,晶体扭曲为材料设计引入了新的维度。塑料电子设备,例如可折叠液晶屏、智能手机、电脑和太阳能电池板都依赖于携带电力的微小晶体的形状。该合作项目得到了美国国家科学基金会材料研究部固态和材料化学项目的支持,在基础科学层面揭示了扭曲形态对电流和光通过有机半导体晶体传播的影响,以引领在个人消费电子设备以及与可再生能源相关的关键技术的下一个时代。早期结果表明,扭转可以提高导电性。涵盖文学、艺术、历史和教育的外展活动反映了晶体和手性(可以从其镜像中区分出来的物品是手性的,例如手)的主题,这些主题巩固了这些科学努力,重点是利用晶体和手性的有趣方面扭曲晶体作为一个平台,吸引 K-12 学生在纽约都会区参与 STEM 相关活动。技术摘要螺距为 1-500 微米的螺旋晶体在由形成传统有机半导体的分子生长时可以携带电荷。在器件层面,这些长度尺度上的扭曲会对光传播和电荷注入、提取和跳跃产生严重影响。为了阐明扭曲对此类过程的一般影响,作为这项合作研究的一部分,一系列半导体化合物在从熔体结晶成薄膜时被诱导扭曲,该研究得到了该部门固态和材料化学项目的支持美国国家科学基金会材料研究部。使用场效应晶体管平台对这些螺旋晶体进行导电和光电导原子力显微镜和电荷迁移率测量,作为螺距的函数,以确定沿和垂直于扭转轴的局部电场和光致电荷传输的调制。由于光电器件通常需要有源层内具有特定的晶体取向以获得最佳性能,因此将电结晶应用于熔融有机导体以准直电极表面上的扭曲晶体。电磁手性各向异性测量与 PI 实验室独有的完整成像偏振测量相结合,在寻找通过扭曲引入的手性缺陷时得以实现。在此过程中,这项研究揭示了晶体生长的基本机制,同时解决了有机电子领域的固有局限性,包括沿不易接近的晶体方向的大电荷传输各向异性以及独立于分子结构调整分子相互作用的困难。该奖项反映了 NSF 的法定使命通过使用基金会的智力价值和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Charge Transport in Twisted Organic Semiconductor Crystals of Modulated Pitch
- DOI:10.1002/adma.202203842
- 发表时间:2022-08-19
- 期刊:
- 影响因子:29.4
- 作者:Yang, Yongfan;de Moraes, Lygia Silva;Shtukenberg, Alexander G.
- 通讯作者:Shtukenberg, Alexander G.
Transport in Twisted Crystalline Charge Transfer Complexes
- DOI:10.1021/acs.chemmater.1c04003
- 发表时间:2022-02-22
- 期刊:
- 影响因子:8.6
- 作者:Yang, Yongfan;Zhang, Yuze;Kahr, Bart
- 通讯作者:Kahr, Bart
Chiral Crystals, Jack, Conductivity and Magnetism
- DOI:10.1002/hlca.202200202
- 发表时间:2023-05
- 期刊:
- 影响因子:1.8
- 作者:B. Kahr;Yongfan Yang;S. Whittaker;A. Shtukenberg;Stephanie S. Lee
- 通讯作者:B. Kahr;Yongfan Yang;S. Whittaker;A. Shtukenberg;Stephanie S. Lee
Collimating the growth of twisted crystals of achiral compounds
- DOI:10.1002/chir.23558
- 发表时间:2023-03-18
- 期刊:
- 影响因子:2
- 作者:Lozano, Idalys;Whittaker, St. John;Lee, Stephanie S.
- 通讯作者:Lee, Stephanie S.
Twisted tetrathiafulvalene crystals
- DOI:10.1039/d2me00010e
- 发表时间:2022-02-16
- 期刊:
- 影响因子:3.6
- 作者:Yang, Yongfan;Zong, Kai;Lee, Stephanie S.
- 通讯作者:Lee, Stephanie S.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephanie Lee其他文献
Quantifying the Effects of Smartphone Adoption: Digital Device Substitution and Digital Consumption Expansion
量化智能手机采用的影响:数字设备替代和数字消费扩张
- DOI:
10.2139/ssrn.3014995 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Stephanie Lee - 通讯作者:
Stephanie Lee
Structural Econometric Models
结构计量经济学模型
- DOI:
10.1287/educ.2019.0203 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Yan Huang;Stephanie Lee;Yong Tan - 通讯作者:
Yong Tan
Elektrostatisch gebundenes vesikel
静电场
- DOI:
- 发表时间:
2011 - 期刊:
- 影响因子:0
- 作者:
Akihiro Kishimura;Kazunori Kataoka;Stephanie Lee;Yasutaka Anraku;Aya Koide;Mitsuru Sakai;Q. Yu - 通讯作者:
Q. Yu
Novel Machine Learning Analysis Algorithm ofDNA Methylation Patterns Identifies CerebralPalsy with Concurrent Epilepsy
DNA 甲基化模式的新型机器学习分析算法可识别脑瘫并发癫痫
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Jonathan Hicks;Karyn Robinson;Stephanie Lee;Adam Marsh;Robert Akins - 通讯作者:
Robert Akins
Diagnosis of systemic mastocytosis with cryptic deletion of TET2 and DNMT3A resulting from unbalanced translocation.
诊断系统性肥大细胞增多症,伴有不平衡易位导致的 TET2 和 DNMT3A 隐性缺失。
- DOI:
10.1111/bjh.19501 - 发表时间:
2024 - 期刊:
- 影响因子:6.5
- 作者:
Signy Chow;Stephanie Lee;August Lin;Kenneth J Craddock;Adam C Smith;Hubert Tsui - 通讯作者:
Hubert Tsui
Stephanie Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephanie Lee', 18)}}的其他基金
Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
- 批准号:
2325911 - 财政年份:2024
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
CAREER: Engineering Arrays of Organic Light Harvesting Crystals from Solution
职业:从溶液中收集有机光晶体的工程阵列
- 批准号:
2115193 - 财政年份:2021
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Collaborative Research: Charge Transport in Helicoidal Molecular Crystals
合作研究:螺旋分子晶体中的电荷传输
- 批准号:
2003997 - 财政年份:2020
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
CAREER: Engineering Arrays of Organic Light Harvesting Crystals from Solution
职业:从溶液中收集有机光晶体的工程阵列
- 批准号:
1846178 - 财政年份:2019
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
Higher Efficiency Organic Solar Cells via Continuous Processing under Optimum Shearing Conditions
通过在最佳剪切条件下连续加工获得更高效率的有机太阳能电池
- 批准号:
1635284 - 财政年份:2016
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
相似国自然基金
CHARGE综合征致病基因CHD7介导的三维转录调控网络研究
- 批准号:
- 批准年份:2022
- 资助金额:51 万元
- 项目类别:面上项目
基于信息呈现与收费模式的平台治理研究
- 批准号:72271217
- 批准年份:2022
- 资助金额:46 万元
- 项目类别:面上项目
基于活动方法的自动驾驶通勤建模与拥堵收费问题研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于半约束驾驶行为的混合型收费站分流区交通安全评估与主动管控研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向智能网联车与人驾车混合交通流的拥堵收费模型研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
- 批准号:
2309273 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant
FORUM ON MEDICAL AND PUBLIC HEALTH PREPAREDNESS FOR DISASTERS AND EMERGENCIES AND ACTION COLLABORATIVE ON DISASTERS/PUBLIC HEALTH EMERGENCY RESEARCH
灾害和紧急情况医疗和公共卫生防备论坛以及灾害/公共卫生紧急情况研究行动合作
- 批准号:
10937101 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
- 批准号:
2302763 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials
合作研究:CDS
- 批准号:
2302764 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Continuing Grant
Collaborative Research: Unraveling the Initial Charge Separation Mechanism in Photosystem I: A synergistic Approach
合作研究:揭示光系统 I 中的初始电荷分离机制:一种协同方法
- 批准号:
2313482 - 财政年份:2023
- 资助金额:
$ 29.72万 - 项目类别:
Standard Grant