CAREER: Engineering Arrays of Organic Light Harvesting Crystals from Solution

职业:从溶液中收集有机光晶体的工程阵列

基本信息

  • 批准号:
    2115193
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-01 至 2024-01-31
  • 项目状态:
    已结题

项目摘要

Inexpensive sources of clean, renewable energy to expand the US energy portfolio are among the most urgent needs of today's society. Substituting conventional silicon with solution-processed organic semiconductors promises to drive down manufacturing costs and significantly increase the production capacity of solar panels. This Faculty Early Career Development (CAREER) Program grant will support fundamental research addressing the continuous manufacturing of organic semiconductor crystal arrays optimized for maximum sunlight absorption and electricity generation. Thin scaffolds that can guide organic semiconductor crystal formation and growth during deposition from solution will be incorporated directly into solar panels. As a generalizable strategy to control solution-phase crystallization, the findings from this research will promote the progress of science and advance the national prosperity in a broad range of scientific disciplines, from disposable sensors to pharmaceutical manufacturing. By engaging students in emerging renewable energy technologies, this project will serve as a platform to promote long-term retention of K-12 students and women in science and engineering. Confinement of crystals within nanoporous scaffolds is a powerful strategy to select for specific crystal orientations and polymorphs and has contributed to a fundamental understanding of critical nucleus sizes and crystal growth mechanisms. This research project endeavors to restrict nucleation events to nanoscale environments but allow subsequent crystal growth to proceed unconfined above the scaffolds. In doing so, control over the crystal orientation and structure will be retained while significantly increasing the accessible crystal surface area. By systematically varying solute-solvent interactions, solute-substrate interactions, and processing conditions, relationships between molecular parameters and the orientation, density and structure of nuclei will be uncovered. Such knowledge will be used to establish design principles to achieve desired crystallization outcomes. For example, control over the orientation of nuclei will enable the first realization of vertical organic semiconductor crystal arrays in which the stack direction is aligned with the charge transport direction in solution-processed organic solar cells. This research strategy will be compatible with continuous processing methods that will drive down manufacturing costs compared to conventional batch spin coating used to deposit active layers in the majority of the state-of-the-art organic solar cells.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
扩大美国能源组合的廉价清洁可再生能源是当今社会最迫切的需求之一。用溶液加工的有机半导体替代传统的硅有望降低制造成本并显着提高太阳能电池板的产能。该教师早期职业发展(职业)计划拨款将支持基础研究,解决有机半导体晶体阵列的连续制造问题,该阵列针对最大程度的阳光吸收和发电进行了优化。在溶液沉积过程中可以引导有机半导体晶体形成和生长的薄支架将直接纳入太阳能电池板中。作为控制溶液相结晶的通用策略,这项研究的结果将促进科学进步,促进从一次性传感器到药品制造等广泛科学学科的国家繁荣。通过让学生参与新兴的可再生能源技术,该项目将成为促进 K-12 学生和女性长期留在科学和工程领域的平台。将晶体限制在纳米多孔支架内是选择特定晶体取向和多晶型的有效策略,并有助于对关键核尺寸和晶体生长机制的基本理解。该研究项目致力于将成核事件限制在纳米级环境中,但允许随后的晶体生长在支架上方不受限制地进行。这样做,将保留对晶体取向和结构的控制,同时显着增加可接近的晶体表面积。通过系统地改变溶质-溶剂相互作用、溶质-底物相互作用和处理条件,分子参数与核的方向、密度和结构之间的关系将被揭示。这些知识将用于建立设计原则,以实现所需的结晶结果。例如,对核取向的控制将首次实现垂直有机半导体晶体阵列,其中堆叠方向与溶液处理有机太阳能电池中的电荷传输方向对齐。与用于在大多数最先进的有机太阳能电池中沉积活性层的传统批量旋涂相比,该研究策略将与连续加工方法兼容,从而降低制造成本。该奖项反映了 NSF 的法定使命和通过使用基金会的智力优点和更广泛的影响审查标准进行评估,该项目被认为值得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stephanie Lee其他文献

Quantifying the Effects of Smartphone Adoption: Digital Device Substitution and Digital Consumption Expansion
量化智能手机采用的影响:数字设备替代和数字消费扩张
  • DOI:
    10.2139/ssrn.3014995
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephanie Lee
  • 通讯作者:
    Stephanie Lee
Structural Econometric Models
结构计量经济学模型
Elektrostatisch gebundenes vesikel
静电场
  • DOI:
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Akihiro Kishimura;Kazunori Kataoka;Stephanie Lee;Yasutaka Anraku;Aya Koide;Mitsuru Sakai;Q. Yu
  • 通讯作者:
    Q. Yu
Novel Machine Learning Analysis Algorithm ofDNA Methylation Patterns Identifies CerebralPalsy with Concurrent Epilepsy
DNA 甲基化模式的新型机器学习分析算法可识别脑瘫并发癫痫
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jonathan Hicks;Karyn Robinson;Stephanie Lee;Adam Marsh;Robert Akins
  • 通讯作者:
    Robert Akins
Diagnosis of systemic mastocytosis with cryptic deletion of TET2 and DNMT3A resulting from unbalanced translocation.
诊断系统性肥大细胞增多症,伴有不平衡易位导致的 TET2 和 DNMT3A 隐性缺失。
  • DOI:
    10.1111/bjh.19501
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    6.5
  • 作者:
    Signy Chow;Stephanie Lee;August Lin;Kenneth J Craddock;Adam C Smith;Hubert Tsui
  • 通讯作者:
    Hubert Tsui

Stephanie Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stephanie Lee', 18)}}的其他基金

Patterning Mesoscale Chirality by Guided Crystal Twisting
通过引导晶体扭曲形成中尺度手性图案
  • 批准号:
    2325911
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Charge Transport in Helicoidal Molecular Crystals
合作研究:螺旋分子晶体中的电荷传输
  • 批准号:
    2116183
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Collaborative Research: Charge Transport in Helicoidal Molecular Crystals
合作研究:螺旋分子晶体中的电荷传输
  • 批准号:
    2003997
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
CAREER: Engineering Arrays of Organic Light Harvesting Crystals from Solution
职业:从溶液中收集有机光晶体的工程阵列
  • 批准号:
    1846178
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Higher Efficiency Organic Solar Cells via Continuous Processing under Optimum Shearing Conditions
通过在最佳剪切条件下连续加工获得更高效率的有机太阳能电池
  • 批准号:
    1635284
  • 财政年份:
    2016
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

基于气泡工程的电催化析气电极设计
  • 批准号:
    22379005
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
层工程诱导的Bi5Ti3FeO15基弛豫铁电薄膜储能特性研究
  • 批准号:
    12364016
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
高纬旱区复杂结构性特殊土水敏致灾机理与重大工程灾变防控
  • 批准号:
    42330708
  • 批准年份:
    2023
  • 资助金额:
    231 万元
  • 项目类别:
    重点项目
基于预设轨迹约束的海上风电工程船智能控制理论方法
  • 批准号:
    52301417
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
真实火灾下多层工程竹框架结构损伤演化机理和抗连续倒塌设计方法
  • 批准号:
    52378522
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

The Effects of Estrogen on Cardiac Arrhythmic Propensity
雌激素对心律失常倾向的影响
  • 批准号:
    10731400
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings
开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列
  • 批准号:
    10730576
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
Engineering Human Interneurons for Neural Repair
工程人类中间神经元用于神经修复
  • 批准号:
    10559499
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Living electrodes for auditory rehabilitation.
用于听觉康复的活体电极。
  • 批准号:
    10618167
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
Living electrodes for auditory rehabilitation.
用于听觉康复的活体电极。
  • 批准号:
    10347184
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了