Development of Low-Cost Automatic Machine for In-House Fabrication of Custom Microwire-Based Microelectrode Arrays for Electrophysiology Recordings
开发低成本自动机器,用于内部制造用于电生理学记录的定制微线微电极阵列
基本信息
- 批准号:10730576
- 负责人:
- 金额:$ 46.64万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-20 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAlgorithmsAreaBiomedical ResearchChronicCommunitiesComplexCustomDedicationsDevelopmentDiameterElectric WiringElectrophysiology (science)ElementsEngineeringEnsureEnvironmentGenerationsGoalsHealthHourHybridsImageImplantInkIntuitionInvestmentsLasersLengthManualsMetalsMethodsMicroelectrodesMotionNervous SystemNeurosciencesOperative Surgical ProceduresPerformancePersonsPhasePositioning AttributePreparationPrintingProceduresProcessProtocols documentationScientistSiteSpeedSurfaceSystemTechniquesTechnologyTestingTungstenViolaWidthWorkWritingcarbon fibercareercostcost effectivedesignexperienceexperimental studyfabricationfeedingimage processingimplantationin vivoinnovationinsightmanufactureneuralneurotransmissionoperationprocess optimizationsealskillstemporal measurementtoolundergraduate student
项目摘要
Project Summary
Thanks to the affordability, ease of customization, and superior chronic recording performance, microwire-
based microelectrode array (MEA) is an important tool to record high temporal resolution neural activities to
understand the nervous system at a mechanistic level. But potential of such microwire MEA, especially large-
scale ones made with smallest wires of current scientific needs, is limited by the labor-intensive fabrication
process. If we could have the simple, mature, but tedious tasks done by an automatic machine with high
accuracy, repeatability, and throughput, it will dramatically decrease the labor cost and enable precise handling
of the smallest microwires to build complex custom configuration MEAs. Our longer-term goal is to fully
automate the fabrication and surgical implantation processes for custom minimal-damaging neural interface
implants. The near-term objective of this application is to develop a hybrid fabrication machine (less than $10k
benchtop tool), with which any neuroscience lab or department with minimal engineering expertise could build
custom linear MEAs for their specific electrophysiological recording needs with only raw material costs.
We hypothesize that, as compared to conventional manually assembled microwire MEAs, automatically
fabricated ones by violet laser-based contactless tip preparation, direct-ink-writing (DIW) based electrical
connection, image-based alignment, and machine-based manipulation will have at least equivalent chronic in-
vivo recording performance while costing fewer person-hours to make. This proposal develops and verifies
enabling technologies and the automatic machine in three Specific Aims. Aim 1 utilizes violet laser cutting for
concurrent contactless wire tip sharpening and insulation stripping. Process parameters will be optimized for
both carbon fiber and metal (tungsten) microwires to create conical sharp tip profiles and desired recording site
re-exposure area in one laser path. Aim 2 firstly investigates the printability and phase diagrams of conductive
and sealing epoxies used in our benchtop manual fabrication protocol steps. Secondly, we will develop a multi-
nozzle DIW system controlled by nozzle speed to dispense desired epoxy size/line width and a pick-and-place
unit for surface mount connectors. Such printing-assembly module makes custom MEA circuit connections.
Aim 3 focuses on integration of all module elements into a compact low-cost hybrid machine and development
of machine control algorithms and intuitive user interface. Automated motion control of all machine actuators
will be realized through cost-effective image processing algorithms using edge recognition and custom MEA
designs. All three aims will include in vivo neural signal recordings for direct performance comparison between
conventionally manual-made components/MEAs and counterparts made by developed technologies/machine.
This proposed work will deliver to the neuroscience community an automatic tool for custom microwire MEA
fabrication. It will make custom large-scale minimal-damaging microwire-based MEAs and low-cost chronic
electrophysiological recording widely available, which helps provide further insights into our nervous system.
项目概要
由于价格实惠、易于定制以及卓越的长期记录性能,microwire-
基于微电极阵列(MEA)是记录高时间分辨率神经活动的重要工具
从机械层面了解神经系统。但这种微丝 MEA 的潜力,特别是大
用当前科学需求的最小电线制成的规模,受到劳动密集型制造的限制
过程。如果我们能用一台高自动化机器来完成简单、成熟但繁琐的任务
准确性、重复性和吞吐量,将大大降低劳动力成本并实现精确处理
用于构建复杂的定制配置 MEA 的最小微线。我们的长期目标是充分
自动化定制的损伤最小的神经接口的制造和手术植入过程
植入物。该应用程序的近期目标是开发一种混合制造机器(不到 1 万美元)
台式工具),任何具有最少工程专业知识的神经科学实验室或部门都可以使用它来构建
定制线性 MEA 以满足其特定的电生理记录需求,只需原材料成本。
我们假设,与传统手动组装的微丝 MEA 相比,自动
通过基于紫激光的非接触式笔尖制备、基于直接墨水书写 (DIW) 的电学方法制造
连接、基于图像的对齐和基于机器的操作将至少具有同等的长期作用
Vivo 录音性能,同时制作成本更少。该提案制定并验证
实现技术和自动化机器的三个具体目标。目标 1 利用紫激光切割
同时进行非接触式线尖锐化和绝缘层剥除。工艺参数将被优化
碳纤维和金属(钨)微丝可创建锥形锋利尖端轮廓和所需的记录位置
一条激光路径中的再曝光区域。目标 2 首先研究导电材料的印刷适性和相图
以及我们的台式手动制造协议步骤中使用的密封环氧树脂。其次,我们将开发多
喷嘴 DIW 系统由喷嘴速度控制,以分配所需的环氧树脂尺寸/线宽和拾放
表面贴装连接器单元。这种印刷组装模块可实现定制 MEA 电路连接。
目标 3 侧重于将所有模块元件集成到紧凑型低成本混合机器中并进行开发
机器控制算法和直观的用户界面。所有机器执行器的自动运动控制
将通过使用边缘识别和定制 MEA 的经济高效的图像处理算法来实现
设计。所有三个目标都将包括体内神经信号记录,以便直接比较
传统的手工制造的部件/MEA 和由发达技术/机器制造的对应部件。
这项拟议的工作将为神经科学界提供一种用于定制微线 MEA 的自动工具
制造。它将制造定制的大规模、损伤最小的基于微丝的 MEA 和低成本的慢性
电生理记录广泛使用,有助于进一步了解我们的神经系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Chen其他文献
Lei Chen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
颜面缺损修复三维目标参照数据构建的区域权重非刚性配准算法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 46.64万 - 项目类别:
Identifying and addressing missingness and bias to enhance discovery from multimodal health data
识别和解决缺失和偏见,以增强多模式健康数据的发现
- 批准号:
10637391 - 财政年份:2023
- 资助金额:
$ 46.64万 - 项目类别:
A breakthrough mobile phone technology that aids in early detection of COPD
突破性手机技术有助于早期发现慢性阻塞性肺病
- 批准号:
10760409 - 财政年份:2023
- 资助金额:
$ 46.64万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 46.64万 - 项目类别: