Collaborative Research: CDS&E: Charge-density based ML framework for efficient exploration and property predictions in the large phase space of concentrated materials

合作研究:CDS

基本信息

  • 批准号:
    2302763
  • 负责人:
  • 金额:
    $ 39.54万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Non-technical summaryFuture engineering applications require complex materials to withstand extreme environments. Electronic structure calculations have played an integral role in developing fundamental understanding of atomic and electronic level properties of materials. To tackle the challenges of growing materials complexities, in this project, the investigator at Clemson University will collaborate with investigators at Colorado School of Mines to integrate data-science based image-recognition techniques with electronic structure calculations to predict materials properties. Image recognition is widely used for face recognition, lane-assisted driving, food-contaminant detection, cancer-cell detection, etc. In this project, the charge density of materials will be used in the form of images to learn the electronic structure of materials to enable property predictions in complex materials. The project will contribute to technical, educational and workforce development. A fundamental understanding of lattice distortion in complex alloys will be delivered, namely in high entropy alloys that consist of multiple principal elements in large concentrations. The project will develop an open-source machine learning framework with a curated database of charge densities and alloys’ properties. It will also train undergraduate and graduate students for future digital economy at the intersection of materials physics and data science via a new ‘data science in materials science’ course, and summer workshops.Technical summaryThe chemical randomness in high entropy alloys engenders unique nearest neighbor environments causing lattice and electronic distortions that result in large uncertainties in properties both qualitatively and quantitively. The uncertainties scale with compositional (atomic fraction) and chemical (different elements) diversities resulting in an extremely stiff challenge for density functional theory (DFT) to explore the phase space. This technical challenge runs parallel to the scientific challenge of mechanistic reasons of composition-property correlations. Since, charge density is the fundamental quantity from which the physics and property correlations can be extracted, the investigators will develop a charge-density based machine learning framework that will elucidate the role of disruptive energy landscape on the emerging properties, and simultaneously remove the bottleneck to trace the large phase. The machine learning models will learn the charge density distributions and properties from simpler alloys and predict them in complex alloys while bypassing expensive DFT calculations altogether. The investigators will work under the hypothesis that larger asymmetry in charge density leads to larger uncertainty in properties. The students will learn to perform electronic structure calculations, data generation and interpretation, and application of machine learning models to predict materials properties. The students will also learn image-recognition techniques applied to materials science problems. Summer workshops will be organized by the investigators to engage girls in STEM with an interactive, engaging and hands-on approach. The investigators will also organize a virtual workshop with a specific focus on feature recognition techniques for materials predictions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要未来的工程应用需要复杂的材料来承受极端环境,电子结构计算在发展对材料的原子和电子级特性的基本理解方面发挥了不可或缺的作用,在这个项目中,研究人员解决了材料复杂性不断增长的挑战。克莱姆森大学的研究人员将与科罗拉多矿业学院的研究人员合作,将基于数据科学的图像识别技术与电子结构计算相结合,以预测材料特性。图像识别广泛用于面部识别、车道辅助驾驶、食品污染物检测、在该项目中,材料的电荷密度将以图像的形式用于学习材料的电子结构,从而实现复杂材料的性能预测。该项目将为技术、教育和劳动力发展做出贡献。该项目将提供对复杂合金中晶格畸变的基本了解,即由高浓度的多种主要元素组成的晶格畸变,该框架将开发一个开源机器学习框架,其中包含电荷密度和合金的精选数据库。属性。它还会训练通过新的“材料科学中的数据科学”课程和夏季研讨会,本科生和研究生在材料物理和数据科学的交叉点上了解未来的数字经济。技术摘要高熵合金中的化学随机性产生了独特的最近邻环境,导致晶格和电子扭曲导致性质在定性和定量上都存在很大的不确定性,这些不确定性随着成分(原子分数)和化学(不同元素)的多样性而变化,这对密度泛函理论(DFT)探索这一问题提出了极其严峻的挑战。这一技术挑战与成分-性质相关性的机械原因的科学挑战并行,因为电荷密度是从中提取物理和性质相关性的基本量,研究人员将开发一种基于电荷密度的机器。学习框架将阐明颠覆性能源景观对新兴性能的作用,同时消除追踪大相的瓶颈。机器学习模型将从更简单的合金中学习密度分布和性能,并在绕过昂贵的合金的同时预测它们。研究人员将在电荷密度较大的不对称性导致性能更大的不确定性的假设下进行工作,学生将学习执行电子结构计算、数据生成和解释以及应用机器学习模型来预测材料性能。学生们还将学习应用于材料科学问题的图像识别技术,研究人员将组织夏季研讨会,以互动、参与和实践的方式让女孩参与 STEM。研究人员还将组织一个具有特定内容的虚拟研讨会。专注于材料预测的特征识别技术。这授予 NSF 的法定使命,并通过评估反映使用基金会的智力优点和更广泛的影响审查标准,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dilpuneet Aidhy其他文献

Dilpuneet Aidhy的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dilpuneet Aidhy', 18)}}的其他基金

RII Track--4: Controlling Point-Defect Energetics in Complex Oxides Via Interfacial Strain
RII Track--4:通过界面应变控制复杂氧化物中的点缺陷能量
  • 批准号:
    2245128
  • 财政年份:
    2022
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
RII Track--4: Controlling Point-Defect Energetics in Complex Oxides Via Interfacial Strain
RII Track--4:通过界面应变控制复杂氧化物中的点缺陷能量
  • 批准号:
    1929112
  • 财政年份:
    2019
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant

相似国自然基金

离子型稀土渗流-应力-化学耦合作用机理与溶浸开采优化研究
  • 批准号:
    52364012
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
亲环蛋白调控作物与蚜虫互作分子机制的研究
  • 批准号:
    32301770
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于金属-多酚网络衍生多相吸波体的界面调控及电磁响应机制研究
  • 批准号:
    52302362
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
职场网络闲逛行为的作用结果及其反馈效应——基于行为者和观察者视角的整合研究
  • 批准号:
    72302108
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
EIF6负调控Dicer活性促进EV71复制的分子机制研究
  • 批准号:
    32300133
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CDS&E/Collaborative Research: Local Gaussian Process Approaches for Predicting Jump Behaviors of Engineering Systems
CDS
  • 批准号:
    2420358
  • 财政年份:
    2024
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
CDS&E/Collaborative Research: Data-Driven Inverse Design of Additively Manufacturable Aperiodic Architected Cellular Materials
CDS
  • 批准号:
    2245298
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: Computational Exploration of Electrically Conductive Metal-Organic Frameworks as Cathode Materials in Lithium-Sulfur Batteries
合作研究:CDS
  • 批准号:
    2302618
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
Collaborative Research: CDS&E: 3-D Stellar Hydrodynamics of Convective Penetration and Convective Boundary Mixing in Massive Stars
合作研究:CDS
  • 批准号:
    2309102
  • 财政年份:
    2023
  • 资助金额:
    $ 39.54万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了