I-Corps: 3D Printing of Microneedles for Transdermal Drug Delivery

I-Corps:用于透皮给药的微针 3D 打印

基本信息

项目摘要

The broader impact/commercial potential of this I-Corps project is the development of a microneedle technology for drug delivery and other applications based on 3D printing. Additive manufacturing is a promising technology that may be used for fabrication of customizable, complex, and cost-effective microneedles arrays (MNAs). MNA devices are micron-sized needles that pierce the outer layer of tissue (skin) to deliver drugs in the form of proteins, molecules, and/or peptides into the body. MNAs are considered painless, minimally invasive devices. Currently, MNA patches developed using traditional technologies such as molding, chemical wet etching, and direct laser micromachining require advanced manufacturing facilities, have limited customizability, and lack flexibility over specific MN parameters. The proposed technology allows superior control over geometric parameters such as sub-millimeter height, tip sharpness, and high-aspect ratio. Applications of MNA patches include drug delivery, electric stimulation, chemical biosensing, electrical biosignal recording, and neutral interfaces.This I-Corps project is based on the development of microneedle array (MNA) devices that are micron-sized needles that pierce the outer layer of skin (epidermis) to deliver drugs into the body. The proposed technology is based on a customizable stereolithography (SLA) technique for fabricating high quality MNA devices with 10 µm - 100 µm resolution using biocompatible and biodegradable materials. The microneedles may be fabricated with tip heights of 200 µm - 800 µm and diameters of 50 µm - 200 µm, respectively. Using this SLA advanced manufacturing technique, various MNAs such as conical-, pyramidal-, tetrahedron-, angled, honeybee structure, and arrowhead-shaped may be fabricated with high fidelity and mechanical properties. The proposed microneedle technology can bridge current treatment modalities and is amenable to scale-up for large-scale transdermal applications. Moreover, 3D printed microneedles may be embedded with pharmaceuticals providing tunable drug release kinetics for a variety of medical treatments. These MNA patches will be designed to possess superior mechanical strength and piercing capacity for transdermal drug delivery applications in hospitals, ambulatory surgical centers, and specialty clinics. The initial market target of this technology is diabetes diagnostics to deliver insulin and regulate glucose for Type 1 diabetes treatment. In addition, these MNAs may provide therapeutic efficiency, and safe, painless penetration through skin that may be easily adapted for other drug delivery modalities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该 I-Corps 项目更广泛的影响/商业潜力是开发用于药物输送和其他基于 3D 打印的应用的微针技术,增材制造是一项有前途的技术,可用于制造可定制的、复杂的和成本低廉的产品。有效的微针阵列 (MNA) 装置是微米大小的针,可刺穿组织(皮肤)外层,以将蛋白质、分子和/或肽形式的药物输送到体内。 MNA 被认为是无痛、微创设备。目前,使用成型、化学湿法蚀刻和直接激光微加工等传统技术开发的 MNA 贴片需要先进的制造设施,可定制性有限,并且缺乏对特定 MN 参数的灵活性。对亚毫米高度、尖端锐度和高纵横比等几何参数的卓越控制 MNA 贴片的应用包括药物输送、电刺激、化学生物传感、电生物信号记录和中性。该 I-Corps 项目基于微针阵列 (MNA) 设备的开发,这些设备是微米大小的针,可刺穿皮肤外层(表皮)以将药物输送到体内。所提出的技术基于可定制的技术。立体光刻 (SLA) 技术,使用生物相容性和可生物降解材料制造分辨率为 10 µm - 100 µm 的高质量 MNA 设备。微针可采用尖端高度制造。直径分别为 200 µm - 800 µm 和直径 50 µm - 200 µm 使用这种 SLA 先进制造技术,可以制造各种 MNA,例如圆锥形、金字塔形、四面体、有角度的、蜜蜂结构和箭头形。所提出的微针技术可以桥接当前的治疗方式,并且适合大规模经皮放大。此外,3D 打印的微针可以嵌入药物,为各种医疗提供可调的药物释放动力学,这些 MNA 贴片将被设计为具有卓越的机械强度和刺穿能力,适用于医院、门诊手术中心的透皮给药应用。该技术的最初市场目标是糖尿病诊断,以提供胰岛素和调节血糖以治疗 1 型糖尿病。此外,这些 MNA 可以提供治疗效率,并且可以轻松地安全、无痛地渗透到皮肤。适用于其他药物输送方式。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salil Desai其他文献

Physics-based and data-driven modeling for biomanufacturing 4.0
基于物理和数据驱动的生物制造 4.0 建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Michael Ogunsanya;Salil Desai
  • 通讯作者:
    Salil Desai
Explainable AI for Cyber-Physical Systems: Issues and Challenges
网络物理系统的可解释人工智能:问题和挑战
  • DOI:
    10.1109/access.2024.3395444
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Amber Hoenig;K. Roy;Y. Acquaah;Sun Yi;Salil Desai
  • 通讯作者:
    Salil Desai
Predictive Modeling of Additive Manufacturing Process using Deep Learning Algorithm
使用深度学习算法对增材制造过程进行预测建模
Three-Dimensional-Printed Composite Structures: The Effect of LSCF Slurry Solid Loading, Binder, and Direct-Write Process Parameters
三维打印复合结构:LSCF 浆料固体负载、粘合剂和直写工艺参数的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Man Yang;Santosh Kumar Parupelli;Zhigang Xu;Salil Desai
  • 通讯作者:
    Salil Desai

Salil Desai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salil Desai', 18)}}的其他基金

Excellence in Research: A Cyber-Physical System Framework for In-process Quality Assurance of Inkjet-based Additive Manufacturing
卓越的研究:基于喷墨的增材制造过程质量保证的网络物理系统框架
  • 批准号:
    2100850
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Excellence in Research: Convergent Physics-based Data-driven Bioprinting of Regenerative Tissues for Future Biomanufacturing
卓越的研究:基于融合物理的数据驱动的再生组织生物打印,用于未来的生物制造
  • 批准号:
    2100739
  • 财政年份:
    2021
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
IGE: Developing a Research Engineer Identity
IGE:培养研究工程师身份
  • 批准号:
    1856346
  • 财政年份:
    2019
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Hybrid Bioprinting of Regenerative Osteochondral (Bone-Cartilage) Tissues
再生骨软骨(骨软骨)组织的混合生物打印
  • 批准号:
    1663128
  • 财政年份:
    2017
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Combinatorial Additive Manufacturing Approach for Fabricating Nano/Micro 3D Structures
用于制造纳米/微米 3D 结构的组合增材制造方法
  • 批准号:
    1435649
  • 财政年份:
    2014
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
CAREER: Hybrid Approach to Direct-Write Based Micro and Nano Manufacturing
职业:基于直写的微纳米制造的混合方法
  • 批准号:
    0846562
  • 财政年份:
    2009
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant

相似国自然基金

自由曲面空间网格结构3D打印节点力学性能与智能优化研究
  • 批准号:
    52378167
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高面能量密度全3D打印微型锌离子混合电容器的构筑与储能机理研究
  • 批准号:
    22309176
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    青年科学基金项目
3D打印-前端聚合反应耦合新方法构筑凝胶支架材料及其应用基础研究
  • 批准号:
    22378202
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
分层悬浮3D打印工程化类弹性蛋白用于组织工程肺脏的构建研究
  • 批准号:
    32301209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
3D打印多孔钛合金诱导瘢痕组织膜内巨噬细胞分泌TNFα+/TGFβ1+/BMP2+组织液促进大段骨缺损修复
  • 批准号:
    82302684
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation potential of 3D electronics manufacturing by integrated 3D printing and freeform laser induction
I-Corps:通过集成 3D 打印和自由形式激光感应实现 3D 电子制造的转化潜力
  • 批准号:
    2412186
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
  • 批准号:
    2414710
  • 财政年份:
    2024
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
I-CORPS: 3D Bio-printing for craniofacial reconstruction
I-CORPS:用于颅面重建的 3D 生物打印
  • 批准号:
    2223946
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
    Standard Grant
Design and Engineering of Biodegradable 3D Nanoprinted Microcarriers for HIV Drug Delivery
用于 HIV 药物输送的可生物降解 3D 纳米打印微载体的设计和工程
  • 批准号:
    10384280
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
Design and Engineering of Biodegradable 3D Nanoprinted Microcarriers for HIV Drug Delivery
用于 HIV 药物输送的可生物降解 3D 纳米打印微载体的设计和工程
  • 批准号:
    10709471
  • 财政年份:
    2022
  • 资助金额:
    $ 5万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了