Hybrid Bioprinting of Regenerative Osteochondral (Bone-Cartilage) Tissues

再生骨软骨(骨软骨)组织的混合生物打印

基本信息

项目摘要

Regenerative tissue engineering combines medicine and engineering to develop custom tissue structures that replace damaged tissue or organs. Over the last two decades, research efforts have focused on the manufacture of tissue structures by combining cells and biological nutrients. However, many of these methods have limitations in their ability to precisely arrange cells and nutrients as in natural tissue structures. To address these issues, this research plans to investigate a hybrid bioprinting process, which can control the three dimensional organization of cells and trigger specific cellular activities. Cells from rat bone marrow will placed at target locations within a scaffold structure. They will be further transformed into bone and cartilage cell types by adjusting the bio printing process parameters and material compositions. If successful, the research will be the first step in the production of bone-tissue constructs, which could improve the quality of life for osteoarthritic patients, sports injury athletes and accident trauma survivors. Education and outreach efforts includes development of biomanufacturing coursework that will impact underrepresented students at both undergraduate and graduate levels. The PI will offer a summer camp for high-school students on biofabrication at the STEM Early College within Guilford County Schools. In addition, students will receive exposure to laboratories and pre-clinical trials at the Wake Forest Institute for Regenerative Medicine. This research will investigate hybrid bioprinting to control underlying pattern topology, mechanical stimuli and release of biochemical agents for cell based regenerative tissue engineering. The objectives of this research include: (1) computational modeling of the hybrid bioprinting process using finite element analysis and molecular dynamics models; (2) experimental investigation of different topological patterns, mechanical stimuli and biochemical cues on cell-scaffold interactions; (3) response surface optimization to establish relationships among interacting process parameters of hybrid bioprinting processes for optimal tissue engineering. The differentiation of rat cells into osteogenic (bone) and chondrogenic (cartilage) lineages will be studied within vascularized hydrogel scaffolds for long-term viability. The ability to manipulate bioprinting parameters and biomaterial compositions will create an effective method to building biomimetic functionally-gradient topographies. A model system will be developed to investigate the relationship between placement proximity, mechanical loading and release kinetics of bioactive factors on cell proliferation. Finally, biochemical assays and characterization of the regenerated bone-cartilage tissues will give insight for neo-tissue regeneration.
再生组织工程将医学和工程学结合起来,开发替代受损组织或器官的定制组织结构,研究工作主要集中在通过结合细胞和生物营养素来制造组织结构。为了解决这些问题,本研究计划研究一种混合生物打印过程,该过程可以控制细胞的三维组织并触发来自大鼠骨髓的细胞的特定细胞活动。将被放置在脚手架结构内的目标位置。如果成功,该研究将通过调整生物打印工艺参数和材料成分进一步转化为骨和软骨细胞类型,这将是生产骨组织结构的第一步,这可以改善骨关节炎患者的生活质量。 、运动损伤运动员和事故创伤幸存者的教育和推广工作包括开发生物制造课程,这将影响本科和研究生阶段的代表性不足的学生。PI 将为高中生提供生物制造夏令营。此外,吉尔福德县学校内的 STEM 早期学院还将让学生接触维克森林再生医学研究所的实验室和临床前试验,这项研究将通过混合生物打印来控制潜在的图案拓扑、机械刺激和生化制剂的释放。这项研究的目标包括:(1)使用有限元分析和分子动力学模型对混合生物打印过程进行计算建模;(2)对不同拓扑模式、机械刺激和生化线索进行实验研究。细胞-支架相互作用;(3)响应面优化,以建立混合生物打印过程的相互作用过程参数之间的关系,以实现最佳组织工程,将在血管化水凝胶支架内研究大鼠细胞分化为成骨(骨)和软骨(软骨)谱系。生物打印参数和生物材料成分的能力将创建一种构建仿生功能梯度拓扑的有效方法,以操纵放置之间的关系。最后,再生骨软骨组织的生物化学测定和表征将为新组织再生提供见解。

项目成果

期刊论文数量(23)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Understanding Material Deformation in Nanoimprint of Gold using Molecular Dynamics Simulations
A Review of Biomedical Devices: Classification, Regulatory Guidelines, Human Factors, Software as a Medical Device, and Cybersecurity
  • DOI:
    10.1007/s44174-023-00113-9
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Felix Tettey;Santosh Kumar Parupelli;Salil Desai
  • 通讯作者:
    Felix Tettey;Santosh Kumar Parupelli;Salil Desai
Additive Manufacturing of Compensator Devices for Radiation Therapy
放射治疗补偿装置的增材制造
Molecular Dynamics Simulation of Poly Acrylic Acid as a Resist Material for Thermal Nanoimprint Lithography Processes
聚丙烯酸作为热纳米压印光刻工艺抗蚀剂材料的分子动力学模拟
Prediction of mechanical behavior of 3D bioprinted tissue-engineered scaffolds using finite element method (FEM) analysis
使用有限元法 (FEM) 分析预测 3D 生物打印组织工程支架的机械行为
  • DOI:
    10.1016/j.addma.2020.101181
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    11
  • 作者:
    Soufivand, Anahita Ahmadi;Abolfathi, Nabiollah;Hashemi, Seyyed Ataollah;Lee, Sang Jin
  • 通讯作者:
    Lee, Sang Jin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Salil Desai其他文献

Physics-based and data-driven modeling for biomanufacturing 4.0
基于物理和数据驱动的生物制造 4.0 建模
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Michael Ogunsanya;Salil Desai
  • 通讯作者:
    Salil Desai
Explainable AI for Cyber-Physical Systems: Issues and Challenges
网络物理系统的可解释人工智能:问题和挑战
  • DOI:
    10.1109/access.2024.3395444
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Amber Hoenig;K. Roy;Y. Acquaah;Sun Yi;Salil Desai
  • 通讯作者:
    Salil Desai
Predictive Modeling of Additive Manufacturing Process using Deep Learning Algorithm
使用深度学习算法对增材制造过程进行预测建模
Three-Dimensional-Printed Composite Structures: The Effect of LSCF Slurry Solid Loading, Binder, and Direct-Write Process Parameters
三维打印复合结构:LSCF 浆料固体负载、粘合剂和直写工艺参数的影响
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Man Yang;Santosh Kumar Parupelli;Zhigang Xu;Salil Desai
  • 通讯作者:
    Salil Desai

Salil Desai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Salil Desai', 18)}}的其他基金

I-Corps: 3D Printing of Microneedles for Transdermal Drug Delivery
I-Corps:用于透皮给药的微针 3D 打印
  • 批准号:
    2116181
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Excellence in Research: A Cyber-Physical System Framework for In-process Quality Assurance of Inkjet-based Additive Manufacturing
卓越的研究:基于喷墨的增材制造过程质量保证的网络物理系统框架
  • 批准号:
    2100850
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Excellence in Research: Convergent Physics-based Data-driven Bioprinting of Regenerative Tissues for Future Biomanufacturing
卓越的研究:基于融合物理的数据驱动的再生组织生物打印,用于未来的生物制造
  • 批准号:
    2100739
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
IGE: Developing a Research Engineer Identity
IGE:培养研究工程师身份
  • 批准号:
    1856346
  • 财政年份:
    2019
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Combinatorial Additive Manufacturing Approach for Fabricating Nano/Micro 3D Structures
用于制造纳米/微米 3D 结构的组合增材制造方法
  • 批准号:
    1435649
  • 财政年份:
    2014
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
CAREER: Hybrid Approach to Direct-Write Based Micro and Nano Manufacturing
职业:基于直写的微纳米制造的混合方法
  • 批准号:
    0846562
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

基于生物三维打印的阿尔兹海默症炎性血脑屏障模型构建及β-淀粉样蛋白病变机制研究
  • 批准号:
    52375295
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
生物3D打印多维仿生的超分子水凝胶支架引导骨软骨一体化修复的作用及机制研究
  • 批准号:
    82302686
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于3D生物打印类器官模型探究PAK5调控三阴性乳腺癌铂类耐药的机制研究
  • 批准号:
    82303979
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
约束模板导引的原位生物3D打印方法研究
  • 批准号:
    52305300
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
构建生物3D打印类器官芯片模型研究弹性蛋白-整合素在胃癌免疫微环境中的作用
  • 批准号:
    32371472
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Pre-clinical validation of 3D-printed nerve conduits for pediatric peripheral nerve repair
3D 打印神经导管用于儿科周围神经修复的临床前验证
  • 批准号:
    10672031
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
High-throughput Spheroid Bioprinting Technology for Scalable Fabrication of Tissues
用于可扩展组织制造的高通量球体生物打印技术
  • 批准号:
    10744937
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Production of 3D Bioprinted Autologous Vaginal Tissue Constructs for Reconstructive Applications
生产用于重建应用的 3D 生物打印自体阴道组织结构
  • 批准号:
    10672642
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
Personalized bioprinting technology for de novo PDL regeneration
用于 PDL 从头再生的个性化生物打印技术
  • 批准号:
    10667088
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
3D bioprinting of regenerative, corneal cell-laden inks to treat corneal blindness
3D 生物打印充满角膜细胞的再生墨水来治疗角膜失明
  • 批准号:
    10606474
  • 财政年份:
    2023
  • 资助金额:
    $ 30万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了