EAGER: Magnetoelectric Biosensor for Rapid Point-of-Care COVID-19 diagnostics
EAGER:用于快速护理点 COVID-19 诊断的磁电生物传感器
基本信息
- 批准号:2115588
- 负责人:
- 金额:$ 9.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-02-15 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
A key component of effective pandemic management is efficient infection surveillance and contact tracing. Testing for COVID-19, caused by the coronavirus, SARS-CoV-2, has been primarily limited to symptomatic patients who seek medical care. However, this approach misses infections in individuals with mild or no symptoms, who are, in fact, highly contagious. While the availability of diagnostic tests using state-of-the-art instrumentation has been rapidly scaled up in response to the COVID-19 pandemic, it remains woefully inadequate for effective disease surveillance and contact tracing. There remains an urgent critical need for ultrasensitive, simple, and rapid diagnostic assays at the point-of-care to enable wide-scale population testing and screening. The ongoing lack of quickly scalable and deployable diagnostic tools for effective wide-scale COVID-19 surveillance is a significant handicap in COVID-19 pandemic management. Such ultrasensitive diagnostic tools are likely to persist into the foreseeable future due to continuously emerging infectious diseases. The success of these tools can make a significant impact at the point-of-care for diagnostic and quantitation of cancer biomarkers and other infectious diseases as well as for the surveillance of environmental hazards and contaminants. This project will be closely integrated with the existing programs at the University of Houston to enhance the recruitment of women and underrepresented minorities into the fields of science and engineering. This research will enable a number of undergraduate Capstone Design projects. The knowledge gained over the course of this project will be disseminated through the Nano Engineering Minor option and graduate courses offered by the PIs in the Cullen College of Engineering.This EAGER aims to demonstrate the feasibility of an inexpensive, compact, and ultrasensitive magneto electric biosensor platform designed for quantitative detection of the SARS-CoV-2 virus nucleoprotein in patient samples. The proposed biosensor is based on magnetic reporter nanoparticles detection in a test line of a lateral flow assay (similar to the technology used in a pregnancy test) using magnetoelectric resonant sensors. Magnetoelectric sensors utilize strain-mediated energy transfer between magnetostrictive and piezoelectric sensor components. These sensors enable the efficient conversion of exceedingly weak external magnetic fields produced by magnetic nanoparticles into electrical signals. The technology is expected to be far more sensitive than current state-of-the-art antigen-detection diagnostics. The achievable sensitivity is also likely to be exceeding the sensitivity of the state-of-the-art tools currently available only at centralized laboratories. The new biosensors will leverage inexpensive and highly scalable manufacturing approaches routinely employed to fabricate micro-electromechanical systems. The biosensor will be comprised of disposable magnetoelectric lateral flow assay cartridges and a simple electronic readout built using low-cost off-the-shelf electronic components. The technology is ideal for sensitively detecting and quantifying the SARS-CoV-2 virus nucleoprotein in nasopharyngeal swabs or saliva samples. It has the potential to become an invaluable tool in pandemic management. Successful demonstration of the technology will establish an analytical and diagnostic platform widely useful in biomedical science and clinical diagnostics. This platform technology will be readily extendable to other types of infectious diseases, detection of cancer biomarkers, and food/environmental contaminants monitoring.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
有效大流行管理的关键组成部分是有效的感染监视和接触跟踪。由冠状病毒(SARS-COV-2)引起的Covid-19测试主要仅限于寻求医疗护理的有症状患者。但是,这种方法错过了轻度或没有症状的个体的感染,实际上是高度传染性的。尽管使用最先进的仪器的诊断测试的可用性已迅速缩放,以响应于19 COVID-19的大流行,但由于有效的疾病监测和接触跟踪,它仍然不足。在护理点上,迫切需要对超敏,简单和快速的诊断测定法,以实现大规模的人口测试和筛查。持续缺乏可用于有效大规模Covid-19的有效大规模监视的快速可扩展和可部署的诊断工具,这是Covid-19-19大流行管理的重要障碍。由于不断出现的传染病,这种超敏感的诊断工具可能会持续到可预见的未来。这些工具的成功可以在护理点上产生重大影响,以诊断和定量癌症生物标志物和其他传染病,以及对环境危害和污染物的监视。该项目将与休斯顿大学现有计划紧密融合,以增强妇女的招募和代表性不足的少数民族进入科学和工程领域。这项研究将使许多本科生顶峰设计项目。 The knowledge gained over the course of this project will be disseminated through the Nano Engineering Minor option and graduate courses offered by the PIs in the Cullen College of Engineering.This EAGER aims to demonstrate the feasibility of an inexpensive, compact, and ultrasensitive magneto electric biosensor platform designed for quantitative detection of the SARS-CoV-2 virus nucleoprotein in patient samples.拟议的生物传感器基于使用磁谐振传感器的横向流量测定法(类似于妊娠试验中使用的技术)的测试线中的磁性报告器纳米颗粒检测。磁电传感器利用磁脑介导的能量转移和压电传感器组件之间的能量转移。这些传感器使磁性纳米颗粒产生的极弱的外部磁场有效地转化为电信号。预计该技术将比当前的最新抗原检测诊断更敏感。可实现的灵敏度也可能超过目前仅在集中实验室可用的最先进工具的敏感性。新的生物传感器将利用通常采用的廉价且高度可扩展的制造方法来制造微电动机电系统。该生物传感器将包括一次性磁电侧流量测定盒和使用低成本现成的电子组件构建的简单电子读数。该技术是在鼻咽拭子或唾液样品中敏感检测和量化SARS-COV-2病毒核蛋白的理想选择。它有可能成为大流行管理中的宝贵工具。该技术的成功演示将建立一个在生物医学科学和临床诊断方面广泛有用的分析和诊断平台。该平台技术将很容易扩展到其他类型的传染病,癌症生物标志物的检测以及食品/环境污染物监测。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛的审查标准通过评估来进行评估的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Piezoelectricity across 2D Phase Boundaries
跨越二维相界的压电
- DOI:10.1002/adma.202206425
- 发表时间:2022
- 期刊:
- 影响因子:29.4
- 作者:Puthirath, Anand B.;Zhang, Xiang;Krishnamoorthy, Aravind;Xu, Rui;Samghabadi, Farnaz Safi;Moore, David C.;Lai, Jiawei;Zhang, Tianyi;Sanchez, David E.;Zhang, Fu
- 通讯作者:Zhang, Fu
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dmitri Litvinov其他文献
The effect of Fe<sup>3+</sup> on magnetic moment of electrodeposited CoFe alloys—Experimental study and analytical model
- DOI:
10.1016/j.electacta.2008.03.071 - 发表时间:
2008-08-20 - 期刊:
- 影响因子:
- 作者:
Stanko R. Brankovic;Sang-Eun Bae;Dmitri Litvinov - 通讯作者:
Dmitri Litvinov
Oxide/hydroxide incorporation into electrodeposited CoFe alloys—Consequences for magnetic softness
- DOI:
10.1016/j.electacta.2013.06.097 - 发表时间:
2013-11-01 - 期刊:
- 影响因子:
- 作者:
Jinnie George;Shereen Elhalawaty;A. John Mardinly;R.W. Carpenter;Dmitri Litvinov;Stanko R. Brankovic - 通讯作者:
Stanko R. Brankovic
Dmitri Litvinov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dmitri Litvinov', 18)}}的其他基金
Point-of-care ultrahigh sensitivity magnetic lateral flow assay
床旁超高灵敏度磁性侧流检测
- 批准号:
1928334 - 财政年份:2019
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
MRI Consortium: Acquisition of a Nanoimprint Lithography System to Support Transformative Device and Materials Research in the Greater Houston Area
MRI 联盟:收购纳米压印光刻系统以支持大休斯顿地区的变革性设备和材料研究
- 批准号:
1337719 - 财政年份:2013
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
MRI-R2 Consortium: Acquisition of an Electron Beam Lithography System to Support Transformative Device and Materials Research in the Greater Houston Area
MRI-R2 联盟:收购电子束光刻系统以支持大休斯顿地区的变革性器件和材料研究
- 批准号:
0959343 - 财政年份:2010
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
GOALI: Electrochemical Nanofabrication of High-Anisotropy Bit-Patterned Magnetic Arrays using Self-Limiting Ion Milling Fabricated Templates
GOALI:使用自限离子铣削加工模板进行高各向异性位图磁阵列的电化学纳米加工
- 批准号:
0927786 - 财政年份:2009
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
GOALI: Fabrication and Device Physics of Bit-Patterned Magnetic Recording Media
GOALI:位图磁记录介质的制造和器件物理
- 批准号:
0926027 - 财政年份:2009
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Single-biomolecule detector array based on nanomagnetically stabilized magnetoresistive sensors
基于纳米磁稳定磁阻传感器的单生物分子探测器阵列
- 批准号:
0932971 - 财政年份:2009
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant
Carbon Combustion Synthesis in Patterned Precursor Media
图案化前体介质中的碳燃烧合成
- 批准号:
0933140 - 财政年份:2009
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
MRI: Consortium Proposal: Acquisition of a Dual Beam Focused Ion Beam System to Support Transformative Device and Materials Research in the Greater Houston Area
MRI:联盟提案:收购双束聚焦离子束系统以支持大休斯顿地区的变革性设备和材料研究
- 批准号:
0821454 - 财政年份:2008
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
NUE: Development of the NanoEngineering Minor Option (NEMO) at the University of Houston
NUE:休斯顿大学纳米工程辅修选项(NEMO)的开发
- 批准号:
0836680 - 财政年份:2008
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
GOALI: Dynamics and Manipulation of Logic States in Coupled Nanomagnetic Arrays
GOALI:耦合纳米磁性阵列中逻辑状态的动力学和操纵
- 批准号:
0702752 - 财政年份:2007
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
相似国自然基金
高速永磁电机损耗计算与传热分析
- 批准号:52311530085
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:国际(地区)合作与交流项目
磁电响应纳米材料介导局域无线电信号诱导干细胞神经分化及神经修复应用
- 批准号:32371294
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高转矩密度切向励磁游标永磁电机时空域磁场调制特性与拓扑研究
- 批准号:52307066
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高转矩密度双定子模块化低速大转矩永磁电机系统关键基础问题研究
- 批准号:52377062
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
电动汽车用绕组互补型高速磁通反向永磁电机基础研究
- 批准号:52307043
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
U.S.-Ireland R&D Partnership: Highly efficient magnetoelectric nano-antenna arrays with wide operational bandwidth
美国-爱尔兰 R
- 批准号:
2320320 - 财政年份:2023
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
Dynamical magnetoelectric effect and magnon-photon coupling of toroidal moment
环形矩的动态磁电效应与磁子-光子耦合
- 批准号:
23K13064 - 财政年份:2023
- 资助金额:
$ 9.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Design and development of high-performance magnetoelectric composite materials based on periodic polarization inversion structures
基于周期性极化反转结构的高性能磁电复合材料的设计与开发
- 批准号:
23H01309 - 财政年份:2023
- 资助金额:
$ 9.92万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
EAGER: Magnetoelectric Thin Films for High Frequency Devices
EAGER:用于高频设备的磁电薄膜
- 批准号:
2236879 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Standard Grant
CAREER: Observing topological magnetoelectric effects by magneto-optics and quantum transport
职业:通过磁光和量子输运观察拓扑磁电效应
- 批准号:
2143177 - 财政年份:2022
- 资助金额:
$ 9.92万 - 项目类别:
Continuing Grant