CAREER: Securing Deep Reinforcement Learning

职业:保护深度强化学习

基本信息

  • 批准号:
    2045948
  • 负责人:
  • 金额:
    $ 55.45万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-10-01 至 2022-04-30
  • 项目状态:
    已结题

项目摘要

Like many other deep learning techniques, deep reinforcement learning is vulnerable to adversarial attacks. In reinforcement learning, an adversarial attack manipulates a reinforcement learning agent's sensory observation, flummoxing it. Recently, research has demonstrated that an adversarial attack could be even more practical. Instead of implicitly assuming an attacker has the full control to influence an agent's sensory system, the new type of attack presents an adversarial agent to manipulate the target agent's environment and thus trigger it to react in an undesired fashion. Compared with the kind of attack that alters the sensory observation, the new attack is more difficult to counteract. First, the methods (e.g., adversarial training) commonly used for robustifying other deep learning techniques are no longer suitable for deep reinforcement learning. Second, given a reinforcement learning agent, there are few technical approaches to scrutinizing the agent and unveiling its flaws. This project intends to address these two significant problems by integrating and expanding upon a series of technical approaches used in explainable AI, adversarial training, and formal verification in conjunction with program synthesis. The basic idea is first to learn an adversarial agent informed by explainable AI. Using this learned agent, we then unveil the weakness of target agents and adversarially train them accordingly. Through a robustness check, we evaluate the enhanced agents. If a strengthened agent fails the adversary-resistance check, we fall back on formal verification and program synthesis techniques. Using this unified solution, reinforcement learning model developers could identify the policy flaws of reinforcement learning agents and effectively remediate their weaknesses. This project will provide a stack of technical solutions to scrutinizing and robustifying deep reinforcement learning. If successful, the project will significantly advance the field of AI security (for adversarial training and adversarial policy learning) and contribute to the field of machine learning (for explainable AI and verified AI). Besides, this project has the potential to improve the security of reinforcement learning applications significantly.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
与许多其他深度学习技术一样,深度强化学习很容易受到对抗性攻击。在强化学习中,对抗性攻击会操纵强化学习代理的感官观察,使其混乱。最近,研究表明对抗性攻击可能更加实用。这种新型攻击不是隐含地假设攻击者拥有影响代理感知系统的完全控制权,而是提出了一个对抗性代理来操纵目标代理的环境,从而触发其以不期望的方式做出反应。与那种改变感官观察的攻击相比,新的攻击更难以抵抗。首先,通常用于强化其他深度学习技术的方法(例如对抗性训练)不再适合深度强化学习。其次,对于强化学习代理来说,几乎没有什么技术方法可以检查该代理并揭示其缺陷。 该项目旨在通过集成和扩展可解释人工智能、对抗性训练以及与程序合成相结合的形式验证中使用的一系列技术方法来解决这两个问题。基本思想是首先学习一个由可解释的人工智能告知的对抗代理。使用这个学习过的智能体,我们可以揭示目标智能体的弱点,并相应地进行对抗性训练。通过稳健性检查,我们评估增强的代理。如果强化的代理未能通过对手抵抗检查,我们就会依靠形式验证和程序综合技术。使用这个统一的解决方案,强化学习模型开发人员可以识别强化学习代理的策略缺陷并有效地纠正其弱点。该项目将提供一系列技术解决方案来审查和强化深度强化学习。如果成功,该项目将显着推进人工智能安全领域(针对对抗性训练和对抗性政策学习),并为机器学习领域(针对可解释人工智能和经过验证的人工智能)做出贡献。此外,该项目有可能显着提高强化学习应用的安全性。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Xinyu Xing其他文献

CGRED: class guided random early discarding
CGRED:类别引导随机早期丢弃
This paper is included in the Proceedings of the 30th USENIX Security Symposium.
本文收录于第 30 届 USENIX 安全研讨会论文集。
  • DOI:
  • 发表时间:
    1970-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xian Wu;Wenbo Guo;Hua Wei;Xinyu Xing
  • 通讯作者:
    Xinyu Xing
UCognito: Private Browsing without Tears
UCognito:无泪私密浏览
ShadowBound: Efficient Heap Memory Protection Through Advanced Metadata Management and Customized Compiler Optimization
ShadowBound:通过高级元数据管理和定制编译器优化实现高效堆内存保护
Automated Finite State Machine Extraction
自动有限状态机提取

Xinyu Xing的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Xinyu Xing', 18)}}的其他基金

Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
  • 批准号:
    2055320
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant
Collaborative Research: SaTC: CORE: Small: Towards Label Enrichment and Refinement to Harden Learning-based Security Defenses
协作研究:SaTC:核心:小型:走向标签丰富和细化以强化基于学习的安全防御
  • 批准号:
    2225225
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2225234
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Continuing Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    2219379
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    2221122
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Collaborative: Towards Facilitating Kernel Vulnerability Reproduction by Fusing Crowd and Machine Generated Data
SaTC:核心:小型:协作:通过融合人群和机器生成的数据来促进内核漏洞再现
  • 批准号:
    1954466
  • 财政年份:
    2020
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant
SaTC: CORE: Small: Towards Locating Memory Corruption Vulnerability with Core Dump
SaTC:CORE:小:利用核心转储定位内存损坏漏洞
  • 批准号:
    1718459
  • 财政年份:
    2017
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Standard Grant

相似国自然基金

载体再生型固定化脂肪酶在废油制备生物柴中的循环应用研究
  • 批准号:
    22369014
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
城市遮挡环境下惯性/视觉/高精地图辅助多频多系统PPP快速模糊度固定理论与方法研究
  • 批准号:
    42374016
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
微生物固定二氧化碳合成琥珀酸的代谢流调控及其机制解析
  • 批准号:
    22378166
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
固定翼海空跨域航行器出水稳定性与流体动力载荷影响机制
  • 批准号:
    52371327
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人工关节超滑运动界面和生物固定界面设计、制造及行为机理研究
  • 批准号:
    52335004
  • 批准年份:
    2023
  • 资助金额:
    230 万元
  • 项目类别:
    重点项目

相似海外基金

Securing the wireless networks with deep learning and intelligent reflecting surfaces
通过深度学习和智能反射表面保护无线网络
  • 批准号:
    572247-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 55.45万
  • 项目类别:
    University Undergraduate Student Research Awards
Securing the wireless networks with deep learning and intelligent reflecting surfaces
通过深度学习和智能反射表面保护无线网络
  • 批准号:
    572247-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 55.45万
  • 项目类别:
    University Undergraduate Student Research Awards
CAREER: Securing Cyberspace: Gaining Deep Insights into the Online Underground Ecosystem
职业:保护网络空间:深入了解在线地下生态系统
  • 批准号:
    2203261
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Continuing Grant
CAREER: Securing Deep Reinforcement Learning
职业:保护深度强化学习
  • 批准号:
    2225234
  • 财政年份:
    2021
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Continuing Grant
平面的隔膜固定器具によるダニエル電池とその発展研究
丹尼尔电池采用扁平隔膜固定装置及其开发研究
  • 批准号:
    20H00963
  • 财政年份:
    2020
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Grant-in-Aid for Encouragement of Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了